Cargando…

ZFP36L1 and ZFP36L2 control LDLR mRNA stability via the ERK–RSK pathway

Low-density lipoprotein receptor (LDLR) mRNA is unstable, but is stabilized upon extracellular signal-regulated kinase (ERK) activation, possibly through the binding of certain proteins to the LDLR mRNA 3′-untranslated region (UTR), although the detailed mechanism underlying this stability control i...

Descripción completa

Detalles Bibliográficos
Autores principales: Adachi, Shungo, Homoto, Masae, Tanaka, Rikou, Hioki, Yusaku, Murakami, Hiroshi, Suga, Hiroaki, Matsumoto, Masaki, Nakayama, Keiichi I., Hatta, Tomohisa, Iemura, Shun-ichiro, Natsume, Tohru
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2014
Materias:
RNA
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4150769/
https://www.ncbi.nlm.nih.gov/pubmed/25106868
http://dx.doi.org/10.1093/nar/gku652
_version_ 1782332951384555520
author Adachi, Shungo
Homoto, Masae
Tanaka, Rikou
Hioki, Yusaku
Murakami, Hiroshi
Suga, Hiroaki
Matsumoto, Masaki
Nakayama, Keiichi I.
Hatta, Tomohisa
Iemura, Shun-ichiro
Natsume, Tohru
author_facet Adachi, Shungo
Homoto, Masae
Tanaka, Rikou
Hioki, Yusaku
Murakami, Hiroshi
Suga, Hiroaki
Matsumoto, Masaki
Nakayama, Keiichi I.
Hatta, Tomohisa
Iemura, Shun-ichiro
Natsume, Tohru
author_sort Adachi, Shungo
collection PubMed
description Low-density lipoprotein receptor (LDLR) mRNA is unstable, but is stabilized upon extracellular signal-regulated kinase (ERK) activation, possibly through the binding of certain proteins to the LDLR mRNA 3′-untranslated region (UTR), although the detailed mechanism underlying this stability control is unclear. Here, using a proteomic approach, we show that proteins ZFP36L1 and ZFP36L2 specifically bind to the 3′-UTR of LDLR mRNA and recruit the CCR4-NOT-deadenylase complex, resulting in mRNA destabilization. We also show that the C-terminal regions of ZFP36L1 and ZFP36L2 are directly phosphorylated by p90 ribosomal S6 kinase, a kinase downstream of ERK, resulting in dissociation of the CCR4-NOT-deadenylase complex and stabilization of LDLR mRNA. We further demonstrate that targeted disruption of the interaction between LDLR mRNA and ZFP36L1 and ZFP36L2 using antisense oligonucleotides results in upregulation of LDLR mRNA and protein. These results indicate that ZFP36L1 and ZFP36L2 regulate LDLR protein levels downstream of ERK. Our results also show the usefulness of our method for identifying critical regulators of specific RNAs and the potency of antisense oligonucleotide-based therapeutics.
format Online
Article
Text
id pubmed-4150769
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-41507692014-12-01 ZFP36L1 and ZFP36L2 control LDLR mRNA stability via the ERK–RSK pathway Adachi, Shungo Homoto, Masae Tanaka, Rikou Hioki, Yusaku Murakami, Hiroshi Suga, Hiroaki Matsumoto, Masaki Nakayama, Keiichi I. Hatta, Tomohisa Iemura, Shun-ichiro Natsume, Tohru Nucleic Acids Res RNA Low-density lipoprotein receptor (LDLR) mRNA is unstable, but is stabilized upon extracellular signal-regulated kinase (ERK) activation, possibly through the binding of certain proteins to the LDLR mRNA 3′-untranslated region (UTR), although the detailed mechanism underlying this stability control is unclear. Here, using a proteomic approach, we show that proteins ZFP36L1 and ZFP36L2 specifically bind to the 3′-UTR of LDLR mRNA and recruit the CCR4-NOT-deadenylase complex, resulting in mRNA destabilization. We also show that the C-terminal regions of ZFP36L1 and ZFP36L2 are directly phosphorylated by p90 ribosomal S6 kinase, a kinase downstream of ERK, resulting in dissociation of the CCR4-NOT-deadenylase complex and stabilization of LDLR mRNA. We further demonstrate that targeted disruption of the interaction between LDLR mRNA and ZFP36L1 and ZFP36L2 using antisense oligonucleotides results in upregulation of LDLR mRNA and protein. These results indicate that ZFP36L1 and ZFP36L2 regulate LDLR protein levels downstream of ERK. Our results also show the usefulness of our method for identifying critical regulators of specific RNAs and the potency of antisense oligonucleotide-based therapeutics. Oxford University Press 2014-09-02 2014-08-08 /pmc/articles/PMC4150769/ /pubmed/25106868 http://dx.doi.org/10.1093/nar/gku652 Text en © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research. http://creativecommons.org/licenses/by/3.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle RNA
Adachi, Shungo
Homoto, Masae
Tanaka, Rikou
Hioki, Yusaku
Murakami, Hiroshi
Suga, Hiroaki
Matsumoto, Masaki
Nakayama, Keiichi I.
Hatta, Tomohisa
Iemura, Shun-ichiro
Natsume, Tohru
ZFP36L1 and ZFP36L2 control LDLR mRNA stability via the ERK–RSK pathway
title ZFP36L1 and ZFP36L2 control LDLR mRNA stability via the ERK–RSK pathway
title_full ZFP36L1 and ZFP36L2 control LDLR mRNA stability via the ERK–RSK pathway
title_fullStr ZFP36L1 and ZFP36L2 control LDLR mRNA stability via the ERK–RSK pathway
title_full_unstemmed ZFP36L1 and ZFP36L2 control LDLR mRNA stability via the ERK–RSK pathway
title_short ZFP36L1 and ZFP36L2 control LDLR mRNA stability via the ERK–RSK pathway
title_sort zfp36l1 and zfp36l2 control ldlr mrna stability via the erk–rsk pathway
topic RNA
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4150769/
https://www.ncbi.nlm.nih.gov/pubmed/25106868
http://dx.doi.org/10.1093/nar/gku652
work_keys_str_mv AT adachishungo zfp36l1andzfp36l2controlldlrmrnastabilityviatheerkrskpathway
AT homotomasae zfp36l1andzfp36l2controlldlrmrnastabilityviatheerkrskpathway
AT tanakarikou zfp36l1andzfp36l2controlldlrmrnastabilityviatheerkrskpathway
AT hiokiyusaku zfp36l1andzfp36l2controlldlrmrnastabilityviatheerkrskpathway
AT murakamihiroshi zfp36l1andzfp36l2controlldlrmrnastabilityviatheerkrskpathway
AT sugahiroaki zfp36l1andzfp36l2controlldlrmrnastabilityviatheerkrskpathway
AT matsumotomasaki zfp36l1andzfp36l2controlldlrmrnastabilityviatheerkrskpathway
AT nakayamakeiichii zfp36l1andzfp36l2controlldlrmrnastabilityviatheerkrskpathway
AT hattatomohisa zfp36l1andzfp36l2controlldlrmrnastabilityviatheerkrskpathway
AT iemurashunichiro zfp36l1andzfp36l2controlldlrmrnastabilityviatheerkrskpathway
AT natsumetohru zfp36l1andzfp36l2controlldlrmrnastabilityviatheerkrskpathway