Cargando…
An Inversion-Free Method for Finding Positive Definite Solution of a Rational Matrix Equation
A new iterative scheme has been constructed for finding minimal solution of a rational matrix equation of the form X + A*X (−1) A = I. The new method is inversion-free per computing step. The convergence of the method has been studied and tested via numerical experiments.
Autores principales: | Soleymani, Fazlollah, Sharifi, Mahdi, Karimi Vanani, Solat, Khaksar Haghani, Farhad, Kılıçman, Adem |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4151580/ https://www.ncbi.nlm.nih.gov/pubmed/25215323 http://dx.doi.org/10.1155/2014/560931 |
Ejemplares similares
-
On a Cubically Convergent Iterative Method for Matrix Sign
por: Sharifi, M., et al.
Publicado: (2015) -
A New High-Order Stable Numerical Method for Matrix Inversion
por: Haghani, F. Khaksar, et al.
Publicado: (2014) -
On a New Iterative Scheme without Memory with Optimal Eighth Order
por: Sharifi, M., et al.
Publicado: (2014) -
On a Derivative-Free Variant of King's Family with Memory
por: Sharifi, M., et al.
Publicado: (2015) -
A handbook of numerical matrix inversion and solution of linear equations
por: Westlake, Joan R
Publicado: (1968)