Cargando…

Identification of Cleavage Sites Leading to the Shed Form of the Anti-Aging Protein Klotho

[Image: see text] Membrane protein shedding is a critical step in many normal and pathological processes. The anti-aging protein klotho (KL), mainly expressed in kidney and brain, is secreted into the serum and CSF, respectively. KL is proteolytically released, or shed, from the cell surface by ADAM...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Ci-Di, Tung, Tze Yu, Liang, Jennifer, Zeldich, Ella, Tucker Zhou, Tracey B., Turk, Benjamin E., Abraham, Carmela R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2014
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4151695/
https://www.ncbi.nlm.nih.gov/pubmed/25110992
http://dx.doi.org/10.1021/bi500409n
_version_ 1782333050955235328
author Chen, Ci-Di
Tung, Tze Yu
Liang, Jennifer
Zeldich, Ella
Tucker Zhou, Tracey B.
Turk, Benjamin E.
Abraham, Carmela R.
author_facet Chen, Ci-Di
Tung, Tze Yu
Liang, Jennifer
Zeldich, Ella
Tucker Zhou, Tracey B.
Turk, Benjamin E.
Abraham, Carmela R.
author_sort Chen, Ci-Di
collection PubMed
description [Image: see text] Membrane protein shedding is a critical step in many normal and pathological processes. The anti-aging protein klotho (KL), mainly expressed in kidney and brain, is secreted into the serum and CSF, respectively. KL is proteolytically released, or shed, from the cell surface by ADAM10 and ADAM17, which are the α-secretases that also cleave the amyloid precursor protein and other proteins. The transmembrane KL is a coreceptor with the FGF receptor for FGF23, whereas the shed form acts as a circulating hormone. However, the precise cleavage sites in KL are unknown. KL contains two major cleavage sites: one close to the juxtamembrane region and another between the KL1 and KL2 domains. We identified the cleavage site involved in KL release by mutating potential sheddase(s) recognition sequences and examining the production of the KL extracellular fragments in transfected COS-7 cells. Deletion of amino acids T958 and L959 results in a 50–60% reduction in KL shedding, and an additional P954E mutation results in further reduction of KL shedding by 70–80%. Deletion of amino acids 954–962 resulted in a 94% reduction in KL shedding. This mutant also had moderately decreased cell surface expression, yet had overall similar subcellular localization as that of WT KL, as demonstrated by immunofluorescence. Cleavage-resistant mutants could function as a FGFR coreceptor for FGF23, but they lost activity as a soluble form of KL in proliferation and transcriptional reporter assays. Cleavage between the KL1 and KL2 domains is dependent on juxtamembrane cleavage. Our results shed light onto mechanisms underlying KL release from the cell membrane and provide a target for potential pharmacologic interventions aimed at regulating KL secretion.
format Online
Article
Text
id pubmed-4151695
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-41516952015-08-11 Identification of Cleavage Sites Leading to the Shed Form of the Anti-Aging Protein Klotho Chen, Ci-Di Tung, Tze Yu Liang, Jennifer Zeldich, Ella Tucker Zhou, Tracey B. Turk, Benjamin E. Abraham, Carmela R. Biochemistry [Image: see text] Membrane protein shedding is a critical step in many normal and pathological processes. The anti-aging protein klotho (KL), mainly expressed in kidney and brain, is secreted into the serum and CSF, respectively. KL is proteolytically released, or shed, from the cell surface by ADAM10 and ADAM17, which are the α-secretases that also cleave the amyloid precursor protein and other proteins. The transmembrane KL is a coreceptor with the FGF receptor for FGF23, whereas the shed form acts as a circulating hormone. However, the precise cleavage sites in KL are unknown. KL contains two major cleavage sites: one close to the juxtamembrane region and another between the KL1 and KL2 domains. We identified the cleavage site involved in KL release by mutating potential sheddase(s) recognition sequences and examining the production of the KL extracellular fragments in transfected COS-7 cells. Deletion of amino acids T958 and L959 results in a 50–60% reduction in KL shedding, and an additional P954E mutation results in further reduction of KL shedding by 70–80%. Deletion of amino acids 954–962 resulted in a 94% reduction in KL shedding. This mutant also had moderately decreased cell surface expression, yet had overall similar subcellular localization as that of WT KL, as demonstrated by immunofluorescence. Cleavage-resistant mutants could function as a FGFR coreceptor for FGF23, but they lost activity as a soluble form of KL in proliferation and transcriptional reporter assays. Cleavage between the KL1 and KL2 domains is dependent on juxtamembrane cleavage. Our results shed light onto mechanisms underlying KL release from the cell membrane and provide a target for potential pharmacologic interventions aimed at regulating KL secretion. American Chemical Society 2014-08-11 2014-09-02 /pmc/articles/PMC4151695/ /pubmed/25110992 http://dx.doi.org/10.1021/bi500409n Text en Copyright © 2014 American Chemical Society Terms of Use (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html)
spellingShingle Chen, Ci-Di
Tung, Tze Yu
Liang, Jennifer
Zeldich, Ella
Tucker Zhou, Tracey B.
Turk, Benjamin E.
Abraham, Carmela R.
Identification of Cleavage Sites Leading to the Shed Form of the Anti-Aging Protein Klotho
title Identification of Cleavage Sites Leading to the Shed Form of the Anti-Aging Protein Klotho
title_full Identification of Cleavage Sites Leading to the Shed Form of the Anti-Aging Protein Klotho
title_fullStr Identification of Cleavage Sites Leading to the Shed Form of the Anti-Aging Protein Klotho
title_full_unstemmed Identification of Cleavage Sites Leading to the Shed Form of the Anti-Aging Protein Klotho
title_short Identification of Cleavage Sites Leading to the Shed Form of the Anti-Aging Protein Klotho
title_sort identification of cleavage sites leading to the shed form of the anti-aging protein klotho
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4151695/
https://www.ncbi.nlm.nih.gov/pubmed/25110992
http://dx.doi.org/10.1021/bi500409n
work_keys_str_mv AT chencidi identificationofcleavagesitesleadingtotheshedformoftheantiagingproteinklotho
AT tungtzeyu identificationofcleavagesitesleadingtotheshedformoftheantiagingproteinklotho
AT liangjennifer identificationofcleavagesitesleadingtotheshedformoftheantiagingproteinklotho
AT zeldichella identificationofcleavagesitesleadingtotheshedformoftheantiagingproteinklotho
AT tuckerzhoutraceyb identificationofcleavagesitesleadingtotheshedformoftheantiagingproteinklotho
AT turkbenjamine identificationofcleavagesitesleadingtotheshedformoftheantiagingproteinklotho
AT abrahamcarmelar identificationofcleavagesitesleadingtotheshedformoftheantiagingproteinklotho