Cargando…

Preparation of a new composite combining strengthened β-tricalcium phosphate with platelet-rich plasma as a potential scaffold for the repair of bone defects

β-tricalcium phosphate (β-TCP) and platelet-rich plasma (PRP) are commonly used in bone tissue engineering. In the present study, a new composite combining strengthened β-TCP and PRP was prepared and its morphological and mechanical properties were investigated by scanning electron microscopy (SEM)...

Descripción completa

Detalles Bibliográficos
Autores principales: WANG, CHENGGONG, ZHONG, DA, ZHOU, XING, YIN, KE, LIAO, QIANDE, KONG, LINGYU, LIU, ANSONG
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4151786/
https://www.ncbi.nlm.nih.gov/pubmed/25187800
http://dx.doi.org/10.3892/etm.2014.1912
Descripción
Sumario:β-tricalcium phosphate (β-TCP) and platelet-rich plasma (PRP) are commonly used in bone tissue engineering. In the present study, a new composite combining strengthened β-TCP and PRP was prepared and its morphological and mechanical properties were investigated by scanning electron microscopy (SEM) and material testing. The biocompatibility was evaluated by measuring the adhesion rate and cytotoxicity of bone marrow stromal cells (BMSCs). The strengthened β-TCP/PRP composite had an appearance like the fungus Boletus kermesinus with the PRP gel distributed on the surface of the micropores. The maximum load and load intensity were 945.6±86.4 N and 13.1±0.5 MPa, which were significantly higher than those of β-TCP (110.1±14.3 N and 1.6±0.2 MPa; P<0.05). The BMSC adhesion rate on the strengthened β-TCP/PRP composite was >96% after 24 h, with a cell cytotoxicity value of zero. SEM micrographs revealed that following seeding of BMSCs onto the composite in high-glucose Dulbecco’s modified Eagle’s medium culture for two weeks, the cells grew well and exhibited fusiform, spherical and polygonal morphologies, as well as pseudopodial connections. The strengthened β-TCP/PRP composite has the potential to be used as a scaffold in bone tissue engineering due to its effective biocompatibility and mechanical properties.