Cargando…
Structure and function of nucleotide sugar transporters: Current progress
The proteomes of eukaryotes, bacteria and archaea are highly diverse due, in part, to the complex post-translational modification of protein glycosylation. The diversity of glycosylation in eukaryotes is reliant on nucleotide sugar transporters to translocate specific nucleotide sugars that are synt...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4151994/ https://www.ncbi.nlm.nih.gov/pubmed/25210595 http://dx.doi.org/10.1016/j.csbj.2014.05.003 |
_version_ | 1782333076288831488 |
---|---|
author | Hadley, Barbara Maggioni, Andrea Ashikov, Angel Day, Christopher J. Haselhorst, Thomas Tiralongo, Joe |
author_facet | Hadley, Barbara Maggioni, Andrea Ashikov, Angel Day, Christopher J. Haselhorst, Thomas Tiralongo, Joe |
author_sort | Hadley, Barbara |
collection | PubMed |
description | The proteomes of eukaryotes, bacteria and archaea are highly diverse due, in part, to the complex post-translational modification of protein glycosylation. The diversity of glycosylation in eukaryotes is reliant on nucleotide sugar transporters to translocate specific nucleotide sugars that are synthesised in the cytosol and nucleus, into the endoplasmic reticulum and Golgi apparatus where glycosylation reactions occur. Thirty years of research utilising multidisciplinary approaches has contributed to our current understanding of NST function and structure. In this review, the structure and function, with reference to various disease states, of several NSTs including the UDP-galactose, UDP-N-acetylglucosamine, UDP-N-acetylgalactosamine, GDP-fucose, UDP-N-acetylglucosamine/UDP-glucose/GDP-mannose and CMP-sialic acid transporters will be described. Little is known regarding the exact structure of NSTs due to difficulties associated with crystallising membrane proteins. To date, no three-dimensional structure of any NST has been elucidated. What is known is based on computer predictions, mutagenesis experiments, epitope-tagging studies, in-vitro assays and phylogenetic analysis. In this regard the best-characterised NST to date is the CMP-sialic acid transporter (CST). Therefore in this review we will provide the current state-of-play with respect to the structure–function relationship of the (CST). In particular we have summarised work performed by a number groups detailing the affect of various mutations on CST transport activity, efficiency, and substrate specificity. |
format | Online Article Text |
id | pubmed-4151994 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Research Network of Computational and Structural Biotechnology |
record_format | MEDLINE/PubMed |
spelling | pubmed-41519942014-09-10 Structure and function of nucleotide sugar transporters: Current progress Hadley, Barbara Maggioni, Andrea Ashikov, Angel Day, Christopher J. Haselhorst, Thomas Tiralongo, Joe Comput Struct Biotechnol J Mini Review The proteomes of eukaryotes, bacteria and archaea are highly diverse due, in part, to the complex post-translational modification of protein glycosylation. The diversity of glycosylation in eukaryotes is reliant on nucleotide sugar transporters to translocate specific nucleotide sugars that are synthesised in the cytosol and nucleus, into the endoplasmic reticulum and Golgi apparatus where glycosylation reactions occur. Thirty years of research utilising multidisciplinary approaches has contributed to our current understanding of NST function and structure. In this review, the structure and function, with reference to various disease states, of several NSTs including the UDP-galactose, UDP-N-acetylglucosamine, UDP-N-acetylgalactosamine, GDP-fucose, UDP-N-acetylglucosamine/UDP-glucose/GDP-mannose and CMP-sialic acid transporters will be described. Little is known regarding the exact structure of NSTs due to difficulties associated with crystallising membrane proteins. To date, no three-dimensional structure of any NST has been elucidated. What is known is based on computer predictions, mutagenesis experiments, epitope-tagging studies, in-vitro assays and phylogenetic analysis. In this regard the best-characterised NST to date is the CMP-sialic acid transporter (CST). Therefore in this review we will provide the current state-of-play with respect to the structure–function relationship of the (CST). In particular we have summarised work performed by a number groups detailing the affect of various mutations on CST transport activity, efficiency, and substrate specificity. Research Network of Computational and Structural Biotechnology 2014-06-11 /pmc/articles/PMC4151994/ /pubmed/25210595 http://dx.doi.org/10.1016/j.csbj.2014.05.003 Text en © 2014 Hadley et al. |
spellingShingle | Mini Review Hadley, Barbara Maggioni, Andrea Ashikov, Angel Day, Christopher J. Haselhorst, Thomas Tiralongo, Joe Structure and function of nucleotide sugar transporters: Current progress |
title | Structure and function of nucleotide sugar transporters: Current progress |
title_full | Structure and function of nucleotide sugar transporters: Current progress |
title_fullStr | Structure and function of nucleotide sugar transporters: Current progress |
title_full_unstemmed | Structure and function of nucleotide sugar transporters: Current progress |
title_short | Structure and function of nucleotide sugar transporters: Current progress |
title_sort | structure and function of nucleotide sugar transporters: current progress |
topic | Mini Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4151994/ https://www.ncbi.nlm.nih.gov/pubmed/25210595 http://dx.doi.org/10.1016/j.csbj.2014.05.003 |
work_keys_str_mv | AT hadleybarbara structureandfunctionofnucleotidesugartransporterscurrentprogress AT maggioniandrea structureandfunctionofnucleotidesugartransporterscurrentprogress AT ashikovangel structureandfunctionofnucleotidesugartransporterscurrentprogress AT daychristopherj structureandfunctionofnucleotidesugartransporterscurrentprogress AT haselhorstthomas structureandfunctionofnucleotidesugartransporterscurrentprogress AT tiralongojoe structureandfunctionofnucleotidesugartransporterscurrentprogress |