Cargando…
Overcoming Catastrophic Interference in Connectionist Networks Using Gram-Schmidt Orthogonalization
Connectionist models of memory storage have been studied for many years, and aim to provide insight into potential mechanisms of memory storage by the brain. A problem faced by these systems is that as the number of items to be stored increases across a finite set of neurons/synapses, the cumulative...
Autores principales: | Srivastava, Vipin, Sampath, Suchitra, Parker, David J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4152133/ https://www.ncbi.nlm.nih.gov/pubmed/25180550 http://dx.doi.org/10.1371/journal.pone.0105619 |
Ejemplares similares
-
Distributed Gram-Schmidt orthogonalization with simultaneous elements refinement
por: Slučiak, Ondrej, et al.
Publicado: (2016) -
Whitening Technique Based on Gram–Schmidt Orthogonalization for Motor Imagery Classification of Brain–Computer Interface Applications
por: Choi, Hojong, et al.
Publicado: (2022) -
On Simulating Neural Damage in Connectionist Networks
por: Guest, Olivia, et al.
Publicado: (2020) -
Dimensional Lifting through the Generalized Gram–Schmidt Process
por: Havlicek, Hans, et al.
Publicado: (2018) -
On stability and associative recall of memories in attractor neural networks
por: Sampath, Suchitra, et al.
Publicado: (2020)