Cargando…

A Protein L -Based Immunodiagnostic Approach Utilizing Time-Resolved Förster Resonance Energy Transfer

Chelated lanthanides such as europium (Eu) have uniquely long fluorescence emission half-lives permitting their use in time-resolved fluorescence (TRF) assays. In Förster resonance energy transfer (FRET) a donor fluorophore transfers its emission energy to an acceptor fluorophore if in sufficiently...

Descripción completa

Detalles Bibliográficos
Autores principales: Hepojoki, Satu, Nurmi, Visa, Vaheri, Antti, Hedman, Klaus, Vapalahti, Olli, Hepojoki, Jussi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4152265/
https://www.ncbi.nlm.nih.gov/pubmed/25181527
http://dx.doi.org/10.1371/journal.pone.0106432
Descripción
Sumario:Chelated lanthanides such as europium (Eu) have uniquely long fluorescence emission half-lives permitting their use in time-resolved fluorescence (TRF) assays. In Förster resonance energy transfer (FRET) a donor fluorophore transfers its emission energy to an acceptor fluorophore if in sufficiently close proximity. The use of time-resolved (TR) FRET minimizes the autofluorescence of molecules present in biological samples. In this report, we describe a homogenous immunoassay prototype utilizing TR-FRET for detection of antibodies in solution. The assay is based on labeled protein L, a bacterial protein that binds to immunoglobulin (Ig) light chain, and labeled antigen, which upon association with the same Ig molecule produce a TR-FRET active complex. We show that the approach is functional and can be utilized for both mono- and polyvalent antigens. We also compare the assay performance to that of another homogenous TR-FRET immunoassay reported earlier. This novel assay may have wide utility in infectious disease point-of-care diagnostics.