Cargando…

Embryonic Developmental Temperatures Modulate Thermal Acclimation of Performance Curves in Tadpoles of the Frog Limnodynastes peronii

Performance curves of physiological rates are not fixed, and determining the extent to which thermal performance curves can change in response to environmental signals is essential to understand the effect of climate variability on populations. The aim of this study was to determine whether and how...

Descripción completa

Detalles Bibliográficos
Autores principales: Seebacher, Frank, Grigaltchik, Veronica S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4152266/
https://www.ncbi.nlm.nih.gov/pubmed/25181291
http://dx.doi.org/10.1371/journal.pone.0106492
_version_ 1782333114303905792
author Seebacher, Frank
Grigaltchik, Veronica S.
author_facet Seebacher, Frank
Grigaltchik, Veronica S.
author_sort Seebacher, Frank
collection PubMed
description Performance curves of physiological rates are not fixed, and determining the extent to which thermal performance curves can change in response to environmental signals is essential to understand the effect of climate variability on populations. The aim of this study was to determine whether and how temperatures experienced during early embryonic development affect thermal performance curves of later life history stages in the frog Limnodynastes peronii. We tested the hypotheses that a) the embryonic environment affects mean trait values only; b) temperature at which performance of tadpoles is maximal shifts with egg incubation temperatures so that performance is maximised at the incubation temperatures, and c) incubation temperatures modulate the capacity for reversible acclimation in tadpoles. Growth rates were greater in warm (25°C) compared to cold (15°C) acclimated (6 weeks) tadpoles regardless of egg developmental temperatures (15°C or 25°C, representing seasonal means). The breadth of the performance curve of burst locomotor performance (measured at 10, 15, 20, 25, and 30°C, representing annual range) is greatest when egg developmental and acclimation temperatures coincide. The mode of the performance curves shifted with acclimation conditions and maximum performance was always at higher temperatures than acclimation conditions. Performance curves of glycolytic (lactate dehydrogenase activities) and mitochondrial (citrate synthase and cytochrome c oxidase) enzymes were modulated by interactions between egg incubation and acclimation temperatures. Lactate dehydrogenase activity paralleled patterns seen in burst locomotor performance, but oxygen consumption rates and mitochondrial enzyme activities did not mirror growth or locomotor performance. We show that embryonic developmental conditions can modulate performance curves of later life-history stages, thereby conferring flexibilty to respond to environmental conditions later in life.
format Online
Article
Text
id pubmed-4152266
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-41522662014-09-05 Embryonic Developmental Temperatures Modulate Thermal Acclimation of Performance Curves in Tadpoles of the Frog Limnodynastes peronii Seebacher, Frank Grigaltchik, Veronica S. PLoS One Research Article Performance curves of physiological rates are not fixed, and determining the extent to which thermal performance curves can change in response to environmental signals is essential to understand the effect of climate variability on populations. The aim of this study was to determine whether and how temperatures experienced during early embryonic development affect thermal performance curves of later life history stages in the frog Limnodynastes peronii. We tested the hypotheses that a) the embryonic environment affects mean trait values only; b) temperature at which performance of tadpoles is maximal shifts with egg incubation temperatures so that performance is maximised at the incubation temperatures, and c) incubation temperatures modulate the capacity for reversible acclimation in tadpoles. Growth rates were greater in warm (25°C) compared to cold (15°C) acclimated (6 weeks) tadpoles regardless of egg developmental temperatures (15°C or 25°C, representing seasonal means). The breadth of the performance curve of burst locomotor performance (measured at 10, 15, 20, 25, and 30°C, representing annual range) is greatest when egg developmental and acclimation temperatures coincide. The mode of the performance curves shifted with acclimation conditions and maximum performance was always at higher temperatures than acclimation conditions. Performance curves of glycolytic (lactate dehydrogenase activities) and mitochondrial (citrate synthase and cytochrome c oxidase) enzymes were modulated by interactions between egg incubation and acclimation temperatures. Lactate dehydrogenase activity paralleled patterns seen in burst locomotor performance, but oxygen consumption rates and mitochondrial enzyme activities did not mirror growth or locomotor performance. We show that embryonic developmental conditions can modulate performance curves of later life-history stages, thereby conferring flexibilty to respond to environmental conditions later in life. Public Library of Science 2014-09-02 /pmc/articles/PMC4152266/ /pubmed/25181291 http://dx.doi.org/10.1371/journal.pone.0106492 Text en © 2014 Seebacher, Grigaltchik http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Seebacher, Frank
Grigaltchik, Veronica S.
Embryonic Developmental Temperatures Modulate Thermal Acclimation of Performance Curves in Tadpoles of the Frog Limnodynastes peronii
title Embryonic Developmental Temperatures Modulate Thermal Acclimation of Performance Curves in Tadpoles of the Frog Limnodynastes peronii
title_full Embryonic Developmental Temperatures Modulate Thermal Acclimation of Performance Curves in Tadpoles of the Frog Limnodynastes peronii
title_fullStr Embryonic Developmental Temperatures Modulate Thermal Acclimation of Performance Curves in Tadpoles of the Frog Limnodynastes peronii
title_full_unstemmed Embryonic Developmental Temperatures Modulate Thermal Acclimation of Performance Curves in Tadpoles of the Frog Limnodynastes peronii
title_short Embryonic Developmental Temperatures Modulate Thermal Acclimation of Performance Curves in Tadpoles of the Frog Limnodynastes peronii
title_sort embryonic developmental temperatures modulate thermal acclimation of performance curves in tadpoles of the frog limnodynastes peronii
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4152266/
https://www.ncbi.nlm.nih.gov/pubmed/25181291
http://dx.doi.org/10.1371/journal.pone.0106492
work_keys_str_mv AT seebacherfrank embryonicdevelopmentaltemperaturesmodulatethermalacclimationofperformancecurvesintadpolesofthefroglimnodynastesperonii
AT grigaltchikveronicas embryonicdevelopmentaltemperaturesmodulatethermalacclimationofperformancecurvesintadpolesofthefroglimnodynastesperonii