Cargando…

Enzamin ameliorates adipose tissue inflammation with impaired adipocytokine expression and insulin resistance in db/db mice

The effects of Enzamin on obesity-related metabolic disorders in obese db/db mice were examined to explore a novel agent for the prevention of insulin resistance. Db/db mice were treated with water containing Enzamin (0·1 and 1·0 %) for 8 weeks from 6 weeks of age. Enzamin treatment at 1·0 %, but no...

Descripción completa

Detalles Bibliográficos
Autores principales: Tamura, Yukinori, Yano, Masato, Kawao, Naoyuki, Okumoto, Katsumi, Ueshima, Shigeru, Kaji, Hiroshi, Matsuo, Osamu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cambridge University Press 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4153326/
https://www.ncbi.nlm.nih.gov/pubmed/25191587
http://dx.doi.org/10.1017/jns.2013.34
Descripción
Sumario:The effects of Enzamin on obesity-related metabolic disorders in obese db/db mice were examined to explore a novel agent for the prevention of insulin resistance. Db/db mice were treated with water containing Enzamin (0·1 and 1·0 %) for 8 weeks from 6 weeks of age. Enzamin treatment at 1·0 %, but not at 0·1 %, significantly decreased the fasting plasma glucose, serum total cholesterol and TAG levels in db/db mice, without affecting body weight gain and body fat composition. Furthermore, insulin sensitivity and glucose tolerance were improved by the treatment of db/db mice with 1·0 % Enzamin. Immunohistochemical studies and gene expression analysis showed that 1·0 % Enzamin treatment suppressed macrophage accumulation and inflammation in the adipose tissue. In addition, 1·0 % Enzamin treatment increased serum adiponectin in db/db mice. Treatment with 1·0 % Enzamin also significantly suppressed the expression of NADPH oxidase subunits, suggesting an antioxidative effect for Enzamin in the adipose tissue. Furthermore, in vitro experiments demonstrated that the lipopolysaccharide-induced inflammatory reaction was significantly suppressed by Enzamin treatment in macrophages. Enzamin treatment increased the expression of GLUT4 mRNA in muscle, but not GLUT2 mRNA in the liver of db/db mice. Enzamin also increased the mRNA expression of carnitine palmitoyltransferase 1a (CPT1a, muscle isoform) in db/db mice, whereas Enzamin treatment did not affect the mRNA expression of CPT1b (liver isoform) in db/db mice. In conclusion, our data indicate that Enzamin can improve insulin resistance by ameliorating impaired adipocytokine expression, presumably through its anti-inflammatory action, and that Enzamin possesses a potential for preventing the metabolic syndrome.