Cargando…

Panobinostat synergizes with bortezomib to induce endoplasmic reticulum stress and ubiquitinated protein accumulation in renal cancer cells

BACKGROUND: Inducing endoplasmic reticulum (ER) stress is a novel strategy used to treat malignancies. Inhibition of histone deacetylase (HDAC) 6 by the HDAC inhibitor panobinostat hinders the refolding of unfolded proteins by increasing the acetylation of heat shock protein 90. We investigated whet...

Descripción completa

Detalles Bibliográficos
Autores principales: Sato, Akinori, Asano, Takako, Isono, Makoto, Ito, Keiichi, Asano, Tomohiko
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4153447/
https://www.ncbi.nlm.nih.gov/pubmed/25176354
http://dx.doi.org/10.1186/1471-2490-14-71
Descripción
Sumario:BACKGROUND: Inducing endoplasmic reticulum (ER) stress is a novel strategy used to treat malignancies. Inhibition of histone deacetylase (HDAC) 6 by the HDAC inhibitor panobinostat hinders the refolding of unfolded proteins by increasing the acetylation of heat shock protein 90. We investigated whether combining panobinostat with the proteasome inhibitor bortezomib would kill cancer cells effectively by inhibiting the degradation of these unfolded proteins, thereby causing ubiquitinated proteins to accumulate and induce ER stress. METHODS: Caki-1, ACHN, and 769-P cells were treated with panobinostat and/or bortezomib. Cell viability, clonogenicity, and induction of apoptosis were evaluated. The in vivo efficacy of the combination was evaluated using a murine subcutaneous xenograft model. The combination-induced ER stress and ubiquitinated protein accumulation were assessed. RESULTS: The combination of panobinostat and bortezomib induced apoptosis and inhibited renal cancer growth synergistically (combination indexes <1). It also suppressed colony formation significantly (p <0.05). In a murine subcutaneous tumor model, a 10-day treatment was well tolerated and inhibited tumor growth significantly (p <0.05). Enhanced acetylation of the HDAC6 substrate alpha-tubulin was consistent with the suppression of HDAC6 activity by panobinostat, and the combination was shown to induce ER stress and ubiquitinated protein accumulation synergistically. CONCLUSIONS: Panobinostat inhibits renal cancer growth by synergizing with bortezomib to induce ER stress and ubiquitinated protein accumulation. The current study provides a basis for testing the combination in patients with advanced renal cancer.