Cargando…

Modulation of Cerrena unicolor laccase and manganese peroxidase production

Among seven carbon sources tested, glycerol and glucose favored the Cerrena unicolor laccase production (18.8-20.3 U/mL); in addition, glycerol ensured the highest manganese peroxidase (MnP) activity (2 U/mL). Substitution of glycerol with the ethanol production residue (EPR) gave the highest laccas...

Descripción completa

Detalles Bibliográficos
Autores principales: Kachlishvili, Eva, Metreveli, Eka, Elisashvili, Vladimir
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4153879/
https://www.ncbi.nlm.nih.gov/pubmed/25191637
http://dx.doi.org/10.1186/2193-1801-3-463
Descripción
Sumario:Among seven carbon sources tested, glycerol and glucose favored the Cerrena unicolor laccase production (18.8-20.3 U/mL); in addition, glycerol ensured the highest manganese peroxidase (MnP) activity (2 U/mL). Substitution of glycerol with the ethanol production residue (EPR) gave the highest laccase (90.1 U/mL) activity, while the walnut pericarp provided the highest MnP activity (7.4 U/mL). Supplementation of medium with 1 mM copper and 1 mM xylidine at appropriate time caused significant additive effect on laccase expression (333.2 U/mL) in shake-flask experiments. Overproduction of laccase activity (507 U/mL) and secretion of MnP activity was obtained when C. unicolor was cultivated in stirred-tank fermenter. C. unicolor showed several distinctive and attractive technological features: it is capable to synthesize high levels of oxidases under high carbon and high nitrogen conditions and it secretes high laccase activity during trophophase.