Cargando…
Substituting random forest for multiple linear regression improves binding affinity prediction of scoring functions: Cyscore as a case study
BACKGROUND: State-of-the-art protein-ligand docking methods are generally limited by the traditionally low accuracy of their scoring functions, which are used to predict binding affinity and thus vital for discriminating between active and inactive compounds. Despite intensive research over the year...
Autores principales: | Li, Hongjian, Leung, Kwong-Sak, Wong, Man-Hon, Ballester, Pedro J |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4153907/ https://www.ncbi.nlm.nih.gov/pubmed/25159129 http://dx.doi.org/10.1186/1471-2105-15-291 |
Ejemplares similares
-
Low-Quality Structural and Interaction Data Improves Binding Affinity Prediction via Random Forest
por: Li, Hongjian, et al.
Publicado: (2015) -
Correcting the impact of docking pose generation error on binding affinity prediction
por: Li, Hongjian, et al.
Publicado: (2016) -
The Impact of Protein Structure and Sequence Similarity on the Accuracy of Machine-Learning Scoring Functions for Binding Affinity Prediction
por: Li, Hongjian, et al.
Publicado: (2018) -
istar: A Web Platform for Large-Scale Protein-Ligand Docking
por: Li, Hongjian, et al.
Publicado: (2014) -
iview: an interactive WebGL visualizer for protein-ligand complex
por: Li, Hongjian, et al.
Publicado: (2014)