Cargando…
The energy costs of wading in water
Studies measuring the energy costs of wading in water have been limited to higher walking speeds in straight lines, in deep water. However, much foraging in water, by both humans and other primates, is conducted in the shallows and at low speeds of locomotion that include elements of turning, as bef...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Company of Biologists
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4154292/ https://www.ncbi.nlm.nih.gov/pubmed/24907372 http://dx.doi.org/10.1242/bio.20147831 |
_version_ | 1782333397676326912 |
---|---|
author | Halsey, Lewis G. Tyler, Christopher J. Kuliukas, Algis V. |
author_facet | Halsey, Lewis G. Tyler, Christopher J. Kuliukas, Algis V. |
author_sort | Halsey, Lewis G. |
collection | PubMed |
description | Studies measuring the energy costs of wading in water have been limited to higher walking speeds in straight lines, in deep water. However, much foraging in water, by both humans and other primates, is conducted in the shallows and at low speeds of locomotion that include elements of turning, as befits searching for cryptic or hidden foods within a patch. The present study brings together data on the rate of oxygen consumption during wading by humans from previous studies, and augments these with new data for wading in shallower depths, with slower and more tortuous walking, to obtain a better understanding both of the absolute costs of wading in typical scenarios of aquatic foraging and of how the cost of wading varies as a function of water depth and speed of locomotion. Previous and present data indicate that, at low speeds, wading has a similar energetic cost to walking on land, particularly at lower water depths, and only at higher speeds is the cost of wading noticeably more expensive than when water is absent. This is probably explained by the relatively small volume of water that must be displaced during locomotion in shallow waters coupled with the compensating support to the limbs that the water affords. The support to the limbs/body provided by water is discussed further, in the context of bipedal locomotion by non-human primates during wading. |
format | Online Article Text |
id | pubmed-4154292 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | The Company of Biologists |
record_format | MEDLINE/PubMed |
spelling | pubmed-41542922014-09-04 The energy costs of wading in water Halsey, Lewis G. Tyler, Christopher J. Kuliukas, Algis V. Biol Open Research Article Studies measuring the energy costs of wading in water have been limited to higher walking speeds in straight lines, in deep water. However, much foraging in water, by both humans and other primates, is conducted in the shallows and at low speeds of locomotion that include elements of turning, as befits searching for cryptic or hidden foods within a patch. The present study brings together data on the rate of oxygen consumption during wading by humans from previous studies, and augments these with new data for wading in shallower depths, with slower and more tortuous walking, to obtain a better understanding both of the absolute costs of wading in typical scenarios of aquatic foraging and of how the cost of wading varies as a function of water depth and speed of locomotion. Previous and present data indicate that, at low speeds, wading has a similar energetic cost to walking on land, particularly at lower water depths, and only at higher speeds is the cost of wading noticeably more expensive than when water is absent. This is probably explained by the relatively small volume of water that must be displaced during locomotion in shallow waters coupled with the compensating support to the limbs that the water affords. The support to the limbs/body provided by water is discussed further, in the context of bipedal locomotion by non-human primates during wading. The Company of Biologists 2014-06-06 /pmc/articles/PMC4154292/ /pubmed/24907372 http://dx.doi.org/10.1242/bio.20147831 Text en © 2014. Published by The Company of Biologists Ltd http://creativecommons.org/licenses/by/3.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. |
spellingShingle | Research Article Halsey, Lewis G. Tyler, Christopher J. Kuliukas, Algis V. The energy costs of wading in water |
title | The energy costs of wading in water |
title_full | The energy costs of wading in water |
title_fullStr | The energy costs of wading in water |
title_full_unstemmed | The energy costs of wading in water |
title_short | The energy costs of wading in water |
title_sort | energy costs of wading in water |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4154292/ https://www.ncbi.nlm.nih.gov/pubmed/24907372 http://dx.doi.org/10.1242/bio.20147831 |
work_keys_str_mv | AT halseylewisg theenergycostsofwadinginwater AT tylerchristopherj theenergycostsofwadinginwater AT kuliukasalgisv theenergycostsofwadinginwater AT halseylewisg energycostsofwadinginwater AT tylerchristopherj energycostsofwadinginwater AT kuliukasalgisv energycostsofwadinginwater |