Cargando…
Viral RNAs Are Unusually Compact
A majority of viruses are composed of long single-stranded genomic RNA molecules encapsulated by protein shells with diameters of just a few tens of nanometers. We examine the extent to which these viral RNAs have evolved to be physically compact molecules to facilitate encapsulation. Measurements o...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4154850/ https://www.ncbi.nlm.nih.gov/pubmed/25188030 http://dx.doi.org/10.1371/journal.pone.0105875 |
_version_ | 1782333487876931584 |
---|---|
author | Gopal, Ajaykumar Egecioglu, Defne E. Yoffe, Aron M. Ben-Shaul, Avinoam Rao, Ayala L. N. Knobler, Charles M. Gelbart, William M. |
author_facet | Gopal, Ajaykumar Egecioglu, Defne E. Yoffe, Aron M. Ben-Shaul, Avinoam Rao, Ayala L. N. Knobler, Charles M. Gelbart, William M. |
author_sort | Gopal, Ajaykumar |
collection | PubMed |
description | A majority of viruses are composed of long single-stranded genomic RNA molecules encapsulated by protein shells with diameters of just a few tens of nanometers. We examine the extent to which these viral RNAs have evolved to be physically compact molecules to facilitate encapsulation. Measurements of equal-length viral, non-viral, coding and non-coding RNAs show viral RNAs to have among the smallest sizes in solution, i.e., the highest gel-electrophoretic mobilities and the smallest hydrodynamic radii. Using graph-theoretical analyses we demonstrate that their sizes correlate with the compactness of branching patterns in predicted secondary structure ensembles. The density of branching is determined by the number and relative positions of 3-helix junctions, and is highly sensitive to the presence of rare higher-order junctions with 4 or more helices. Compact branching arises from a preponderance of base pairing between nucleotides close to each other in the primary sequence. The density of branching represents a degree of freedom optimized by viral RNA genomes in response to the evolutionary pressure to be packaged reliably. Several families of viruses are analyzed to delineate the effects of capsid geometry, size and charge stabilization on the selective pressure for RNA compactness. Compact branching has important implications for RNA folding and viral assembly. |
format | Online Article Text |
id | pubmed-4154850 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-41548502014-09-08 Viral RNAs Are Unusually Compact Gopal, Ajaykumar Egecioglu, Defne E. Yoffe, Aron M. Ben-Shaul, Avinoam Rao, Ayala L. N. Knobler, Charles M. Gelbart, William M. PLoS One Research Article A majority of viruses are composed of long single-stranded genomic RNA molecules encapsulated by protein shells with diameters of just a few tens of nanometers. We examine the extent to which these viral RNAs have evolved to be physically compact molecules to facilitate encapsulation. Measurements of equal-length viral, non-viral, coding and non-coding RNAs show viral RNAs to have among the smallest sizes in solution, i.e., the highest gel-electrophoretic mobilities and the smallest hydrodynamic radii. Using graph-theoretical analyses we demonstrate that their sizes correlate with the compactness of branching patterns in predicted secondary structure ensembles. The density of branching is determined by the number and relative positions of 3-helix junctions, and is highly sensitive to the presence of rare higher-order junctions with 4 or more helices. Compact branching arises from a preponderance of base pairing between nucleotides close to each other in the primary sequence. The density of branching represents a degree of freedom optimized by viral RNA genomes in response to the evolutionary pressure to be packaged reliably. Several families of viruses are analyzed to delineate the effects of capsid geometry, size and charge stabilization on the selective pressure for RNA compactness. Compact branching has important implications for RNA folding and viral assembly. Public Library of Science 2014-09-04 /pmc/articles/PMC4154850/ /pubmed/25188030 http://dx.doi.org/10.1371/journal.pone.0105875 Text en © 2014 Gopal et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Gopal, Ajaykumar Egecioglu, Defne E. Yoffe, Aron M. Ben-Shaul, Avinoam Rao, Ayala L. N. Knobler, Charles M. Gelbart, William M. Viral RNAs Are Unusually Compact |
title | Viral RNAs Are Unusually Compact |
title_full | Viral RNAs Are Unusually Compact |
title_fullStr | Viral RNAs Are Unusually Compact |
title_full_unstemmed | Viral RNAs Are Unusually Compact |
title_short | Viral RNAs Are Unusually Compact |
title_sort | viral rnas are unusually compact |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4154850/ https://www.ncbi.nlm.nih.gov/pubmed/25188030 http://dx.doi.org/10.1371/journal.pone.0105875 |
work_keys_str_mv | AT gopalajaykumar viralrnasareunusuallycompact AT egeciogludefnee viralrnasareunusuallycompact AT yoffearonm viralrnasareunusuallycompact AT benshaulavinoam viralrnasareunusuallycompact AT raoayalaln viralrnasareunusuallycompact AT knoblercharlesm viralrnasareunusuallycompact AT gelbartwilliamm viralrnasareunusuallycompact |