Cargando…
Dimensionality of Social Networks Using Motifs and Eigenvalues
We consider the dimensionality of social networks, and develop experiments aimed at predicting that dimension. We find that a social network model with nodes and links sampled from an m-dimensional metric space with power-law distributed influence regions best fits samples from real-world networks w...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4154874/ https://www.ncbi.nlm.nih.gov/pubmed/25188391 http://dx.doi.org/10.1371/journal.pone.0106052 |
_version_ | 1782333493567553536 |
---|---|
author | Bonato, Anthony Gleich, David F. Kim, Myunghwan Mitsche, Dieter Prałat, Paweł Tian, Yanhua Young, Stephen J. |
author_facet | Bonato, Anthony Gleich, David F. Kim, Myunghwan Mitsche, Dieter Prałat, Paweł Tian, Yanhua Young, Stephen J. |
author_sort | Bonato, Anthony |
collection | PubMed |
description | We consider the dimensionality of social networks, and develop experiments aimed at predicting that dimension. We find that a social network model with nodes and links sampled from an m-dimensional metric space with power-law distributed influence regions best fits samples from real-world networks when m scales logarithmically with the number of nodes of the network. This supports a logarithmic dimension hypothesis, and we provide evidence with two different social networks, Facebook and LinkedIn. Further, we employ two different methods for confirming the hypothesis: the first uses the distribution of motif counts, and the second exploits the eigenvalue distribution. |
format | Online Article Text |
id | pubmed-4154874 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-41548742014-09-08 Dimensionality of Social Networks Using Motifs and Eigenvalues Bonato, Anthony Gleich, David F. Kim, Myunghwan Mitsche, Dieter Prałat, Paweł Tian, Yanhua Young, Stephen J. PLoS One Research Article We consider the dimensionality of social networks, and develop experiments aimed at predicting that dimension. We find that a social network model with nodes and links sampled from an m-dimensional metric space with power-law distributed influence regions best fits samples from real-world networks when m scales logarithmically with the number of nodes of the network. This supports a logarithmic dimension hypothesis, and we provide evidence with two different social networks, Facebook and LinkedIn. Further, we employ two different methods for confirming the hypothesis: the first uses the distribution of motif counts, and the second exploits the eigenvalue distribution. Public Library of Science 2014-09-04 /pmc/articles/PMC4154874/ /pubmed/25188391 http://dx.doi.org/10.1371/journal.pone.0106052 Text en © 2014 Bonato et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Bonato, Anthony Gleich, David F. Kim, Myunghwan Mitsche, Dieter Prałat, Paweł Tian, Yanhua Young, Stephen J. Dimensionality of Social Networks Using Motifs and Eigenvalues |
title | Dimensionality of Social Networks Using Motifs and Eigenvalues |
title_full | Dimensionality of Social Networks Using Motifs and Eigenvalues |
title_fullStr | Dimensionality of Social Networks Using Motifs and Eigenvalues |
title_full_unstemmed | Dimensionality of Social Networks Using Motifs and Eigenvalues |
title_short | Dimensionality of Social Networks Using Motifs and Eigenvalues |
title_sort | dimensionality of social networks using motifs and eigenvalues |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4154874/ https://www.ncbi.nlm.nih.gov/pubmed/25188391 http://dx.doi.org/10.1371/journal.pone.0106052 |
work_keys_str_mv | AT bonatoanthony dimensionalityofsocialnetworksusingmotifsandeigenvalues AT gleichdavidf dimensionalityofsocialnetworksusingmotifsandeigenvalues AT kimmyunghwan dimensionalityofsocialnetworksusingmotifsandeigenvalues AT mitschedieter dimensionalityofsocialnetworksusingmotifsandeigenvalues AT prałatpaweł dimensionalityofsocialnetworksusingmotifsandeigenvalues AT tianyanhua dimensionalityofsocialnetworksusingmotifsandeigenvalues AT youngstephenj dimensionalityofsocialnetworksusingmotifsandeigenvalues |