Cargando…

Dimensionality of Social Networks Using Motifs and Eigenvalues

We consider the dimensionality of social networks, and develop experiments aimed at predicting that dimension. We find that a social network model with nodes and links sampled from an m-dimensional metric space with power-law distributed influence regions best fits samples from real-world networks w...

Descripción completa

Detalles Bibliográficos
Autores principales: Bonato, Anthony, Gleich, David F., Kim, Myunghwan, Mitsche, Dieter, Prałat, Paweł, Tian, Yanhua, Young, Stephen J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4154874/
https://www.ncbi.nlm.nih.gov/pubmed/25188391
http://dx.doi.org/10.1371/journal.pone.0106052
_version_ 1782333493567553536
author Bonato, Anthony
Gleich, David F.
Kim, Myunghwan
Mitsche, Dieter
Prałat, Paweł
Tian, Yanhua
Young, Stephen J.
author_facet Bonato, Anthony
Gleich, David F.
Kim, Myunghwan
Mitsche, Dieter
Prałat, Paweł
Tian, Yanhua
Young, Stephen J.
author_sort Bonato, Anthony
collection PubMed
description We consider the dimensionality of social networks, and develop experiments aimed at predicting that dimension. We find that a social network model with nodes and links sampled from an m-dimensional metric space with power-law distributed influence regions best fits samples from real-world networks when m scales logarithmically with the number of nodes of the network. This supports a logarithmic dimension hypothesis, and we provide evidence with two different social networks, Facebook and LinkedIn. Further, we employ two different methods for confirming the hypothesis: the first uses the distribution of motif counts, and the second exploits the eigenvalue distribution.
format Online
Article
Text
id pubmed-4154874
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-41548742014-09-08 Dimensionality of Social Networks Using Motifs and Eigenvalues Bonato, Anthony Gleich, David F. Kim, Myunghwan Mitsche, Dieter Prałat, Paweł Tian, Yanhua Young, Stephen J. PLoS One Research Article We consider the dimensionality of social networks, and develop experiments aimed at predicting that dimension. We find that a social network model with nodes and links sampled from an m-dimensional metric space with power-law distributed influence regions best fits samples from real-world networks when m scales logarithmically with the number of nodes of the network. This supports a logarithmic dimension hypothesis, and we provide evidence with two different social networks, Facebook and LinkedIn. Further, we employ two different methods for confirming the hypothesis: the first uses the distribution of motif counts, and the second exploits the eigenvalue distribution. Public Library of Science 2014-09-04 /pmc/articles/PMC4154874/ /pubmed/25188391 http://dx.doi.org/10.1371/journal.pone.0106052 Text en © 2014 Bonato et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Bonato, Anthony
Gleich, David F.
Kim, Myunghwan
Mitsche, Dieter
Prałat, Paweł
Tian, Yanhua
Young, Stephen J.
Dimensionality of Social Networks Using Motifs and Eigenvalues
title Dimensionality of Social Networks Using Motifs and Eigenvalues
title_full Dimensionality of Social Networks Using Motifs and Eigenvalues
title_fullStr Dimensionality of Social Networks Using Motifs and Eigenvalues
title_full_unstemmed Dimensionality of Social Networks Using Motifs and Eigenvalues
title_short Dimensionality of Social Networks Using Motifs and Eigenvalues
title_sort dimensionality of social networks using motifs and eigenvalues
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4154874/
https://www.ncbi.nlm.nih.gov/pubmed/25188391
http://dx.doi.org/10.1371/journal.pone.0106052
work_keys_str_mv AT bonatoanthony dimensionalityofsocialnetworksusingmotifsandeigenvalues
AT gleichdavidf dimensionalityofsocialnetworksusingmotifsandeigenvalues
AT kimmyunghwan dimensionalityofsocialnetworksusingmotifsandeigenvalues
AT mitschedieter dimensionalityofsocialnetworksusingmotifsandeigenvalues
AT prałatpaweł dimensionalityofsocialnetworksusingmotifsandeigenvalues
AT tianyanhua dimensionalityofsocialnetworksusingmotifsandeigenvalues
AT youngstephenj dimensionalityofsocialnetworksusingmotifsandeigenvalues