Cargando…

Changes in the Range of Motion of the Hip Joint and the Muscle Activity of the Rectus Femoris and Biceps Femoris of Stroke Patients during Obstacles Crossing on the Ground and Underwater

[Purpose] The purpose of this study was to examine range of motion (ROM) and the muscle activity of stroke patients during obstacle task on the ground and underwater. [Subjects] The subjects of this study were seven stroke patients in a hospital located in Daejeon, South Korea. [Methods] The measure...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Myung-chul, Han, Seul-ki, Kim, Seung-kyun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Society of Physical Therapy Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4155208/
https://www.ncbi.nlm.nih.gov/pubmed/25202169
http://dx.doi.org/10.1589/jpts.26.1143
Descripción
Sumario:[Purpose] The purpose of this study was to examine range of motion (ROM) and the muscle activity of stroke patients during obstacle task on the ground and underwater. [Subjects] The subjects of this study were seven stroke patients in a hospital located in Daejeon, South Korea. [Methods] The measurements in this study were conducted in an exercise therapy room and a pool dedicated to underwater exercise (water temperature 33.5 °C, air temperature 27 °C) in the hospital building. The pool’s water depth was determined by considering the levels of the xiphoid process of the study subjects. Ten-centimeter-high obstacles were used. An electrogoniometer was used to examine the ROM of flexion and extension of the hip joints on the affected side. An MP150 system a BioNomadix 2-channel wireless EMG transmitter was used to examine the muscle activity of the rectus femoris and biceps femoris of the affected side. [Conclusion] The results suggest that the unaffected side was supported, that the affected side moved, and that the hip joint was bent more underwater than on the ground. The rectus femoris and bicpes femoris were activated significantly less underwater than on the ground in all sections.