Cargando…
Symbolic regression of generative network models
Networks are a powerful abstraction with applicability to a variety of scientific fields. Models explaining their morphology and growth processes permit a wide range of phenomena to be more systematically analysed and understood. At the same time, creating such models is often challenging and requir...
Autores principales: | Menezes, Telmo, Roth, Camille |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4155339/ https://www.ncbi.nlm.nih.gov/pubmed/25190000 http://dx.doi.org/10.1038/srep06284 |
Ejemplares similares
-
Regression Models for Symbolic Interval-Valued Variables
por: Chacón, Jose Emmanuel, et al.
Publicado: (2021) -
Natural Scales in Geographical Patterns
por: Menezes, Telmo, et al.
Publicado: (2017) -
Tubes and bubbles topological confinement of YouTube recommendations
por: Roth, Camille, et al.
Publicado: (2020) -
A flexible symbolic regression method for constructing interpretable clinical prediction models
por: La Cava, William G., et al.
Publicado: (2023) -
Application of the symbolic regression program AI-Feynman to psychology
por: Miyazaki, Masato, et al.
Publicado: (2023)