Cargando…

Inducing Plasticity of Astrocytic Receptors by Manipulation of Neuronal Firing Rates

Close to two decades of research has established that astrocytes in situ and in vivo express numerous G protein-coupled receptors (GPCRs) that can be stimulated by neuronally-released transmitter. However, the ability of astrocytic receptors to exhibit plasticity in response to changes in neuronal a...

Descripción completa

Detalles Bibliográficos
Autores principales: Xie, Alison X., Lauderdale, Kelli, Murphy, Thomas, Myers, Timothy L., Fiacco, Todd A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MyJove Corporation 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4155624/
https://www.ncbi.nlm.nih.gov/pubmed/24686723
http://dx.doi.org/10.3791/51458
Descripción
Sumario:Close to two decades of research has established that astrocytes in situ and in vivo express numerous G protein-coupled receptors (GPCRs) that can be stimulated by neuronally-released transmitter. However, the ability of astrocytic receptors to exhibit plasticity in response to changes in neuronal activity has received little attention. Here we describe a model system that can be used to globally scale up or down astrocytic group I metabotropic glutamate receptors (mGluRs) in acute brain slices. Included are methods on how to prepare parasagittal hippocampal slices, construct chambers suitable for long-term slice incubation, bidirectionally manipulate neuronal action potential frequency, load astrocytes and astrocyte processes with fluorescent Ca(2+) indicator, and measure changes in astrocytic Gq GPCR activity by recording spontaneous and evoked astrocyte Ca(2+) events using confocal microscopy. In essence, a “calcium roadmap” is provided for how to measure plasticity of astrocytic Gq GPCRs. Applications of the technique for study of astrocytes are discussed. Having an understanding of how astrocytic receptor signaling is affected by changes in neuronal activity has important implications for both normal synaptic function as well as processes underlying neurological disorders and neurodegenerative disease.