Cargando…

Randomization to Screening for Prostate, Lung, Colorectal and Ovarian Cancers and Thyroid Cancer Incidence in Two Large Cancer Screening Trials

BACKGROUND: Thyroid cancer incidence has increased significantly over the past three decades due, in part, to incidental detection. We examined the association between randomization to screening for lung, prostate, colorectal and/or ovarian cancers and thyroid cancer incidence in two large prospecti...

Descripción completa

Detalles Bibliográficos
Autores principales: O'Grady, Thomas J., Kitahara, Cari M., DiRienzo, A. Gregory, Boscoe, Francis P., Gates, Margaret A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4156403/
https://www.ncbi.nlm.nih.gov/pubmed/25192282
http://dx.doi.org/10.1371/journal.pone.0106880
Descripción
Sumario:BACKGROUND: Thyroid cancer incidence has increased significantly over the past three decades due, in part, to incidental detection. We examined the association between randomization to screening for lung, prostate, colorectal and/or ovarian cancers and thyroid cancer incidence in two large prospective randomized screening trials. METHODS: We assessed the association between randomization to low-dose helical CT scan versus chest x-ray for lung cancer screening and risk of thyroid cancer in the National Lung Screening Trial (NLST). In the Prostate Lung Colorectal and Ovarian Cancer Screening Trial (PLCO), we assessed the association between randomization to regular screening for said cancers versus usual medical care and thyroid cancer risk. Over a median 6 and 11 years of follow-up in NLST and PLCO, respectively, we identified 60 incident and 234 incident thyroid cancer cases. Cox proportional hazards regression was used to calculate the cause specific hazard ratios (HR) and 95% confidence intervals (CI) for thyroid cancer. RESULTS: In NLST, randomization to lung CT scan was associated with a non-significant increase in thyroid cancer risk (HR  = 1.61; 95% CI: 0.96–2.71). This association was stronger during the first 3 years of follow-up, during which participants were actively screened (HR  = 2.19; 95% CI: 1.07–4.47), but not subsequently (HR  = 1.08; 95% CI: 0.49–2.37). In PLCO, randomization to cancer screening compared with usual care was associated with a significant decrease in thyroid cancer risk for men (HR  = 0.61; 95% CI: 0.49–0.95) but not women (HR  = 0.91; 95% CI: 0.66–1.26). Similar results were observed when restricting to papillary thyroid cancer in both NLST and PLCO. CONCLUSION: Our study suggests that certain medical encounters, such as those using low-dose helical CT scan for lung cancer screening, may increase the detection of incidental thyroid cancer.