Cargando…

Anopheles gambiae eicosanoids modulate Plasmodium berghei survival from oocyst to salivary gland invasion

Eicosanoids affect the immunity of several pathogen/insect models, but their role on the Anopheles gambiae response to Plasmodium is still unknown. Plasmodium berghei-infected mosquitoes were injected with an eicosanoid biosynthesis inhibitor, indomethacin (IN), or a substrate, arachidonic acid (AA)...

Descripción completa

Detalles Bibliográficos
Autores principales: Ramos, Susana, Custódio, Ana, Silveira, Henrique
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Instituto Oswaldo Cruz, Ministério da Saúde 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4156460/
https://www.ncbi.nlm.nih.gov/pubmed/25141285
http://dx.doi.org/10.1590/0074-0276140098
Descripción
Sumario:Eicosanoids affect the immunity of several pathogen/insect models, but their role on the Anopheles gambiae response to Plasmodium is still unknown. Plasmodium berghei-infected mosquitoes were injected with an eicosanoid biosynthesis inhibitor, indomethacin (IN), or a substrate, arachidonic acid (AA), at day 7 or day 12 post-infection (p.i.). Salivary gland invasion was evaluated by sporozoite counts at day 21 p.i. IN promoted infection upon sporozoite release from oocysts, but inhibited infection when sporozoites were still maturing within the oocysts, as observed by a reduction in the number of sporozoites reaching the salivary glands. AA treatment had the opposite effect. We show for the first time that An. gambiae can modulate parasite survival through eicosanoids by exerting an antagonistic or agonistic effect on the parasite, depending on its stage of development.