Cargando…

Drug Repositioning Discovery for Early- and Late-Stage Non-Small-Cell Lung Cancer

Drug repositioning is a popular approach in the pharmaceutical industry for identifying potential new uses for existing drugs and accelerating the development time. Non-small-cell lung cancer (NSCLC) is one of the leading causes of death worldwide. To reduce the biological heterogeneity effects amon...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Chien-Hung, Chang, Peter Mu-Hsin, Lin, Yong-Jie, Wang, Cheng-Hsu, Huang, Chi-Ying F., Ng, Ka-Lok
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4156989/
https://www.ncbi.nlm.nih.gov/pubmed/25210704
http://dx.doi.org/10.1155/2014/193817
Descripción
Sumario:Drug repositioning is a popular approach in the pharmaceutical industry for identifying potential new uses for existing drugs and accelerating the development time. Non-small-cell lung cancer (NSCLC) is one of the leading causes of death worldwide. To reduce the biological heterogeneity effects among different individuals, both normal and cancer tissues were taken from the same patient, hence allowing pairwise testing. By comparing early- and late-stage cancer patients, we can identify stage-specific NSCLC genes. Differentially expressed genes are clustered separately to form up- and downregulated communities that are used as queries to perform enrichment analysis. The results suggest that pathways for early- and late-stage cancers are different. Sets of up- and downregulated genes were submitted to the cMap web resource to identify potential drugs. To achieve high confidence drug prediction, multiple microarray experimental results were merged by performing meta-analysis. The results of a few drug findings are supported by MTT assay or clonogenic assay data. In conclusion, we have been able to assess the potential existing drugs to identify novel anticancer drugs, which may be helpful in drug repositioning discovery for NSCLC.