Cargando…
Rapid Identification of Asteraceae Plants with Improved RBF-ANN Classification Models Based on MOS Sensor E-Nose
Plants from Asteraceae family are widely used as herbal medicines and food ingredients, especially in Asian area. Therefore, authentication and quality control of these different Asteraceae plants are important for ensuring consumers' safety and efficacy. In recent decades, electronic nose (E-n...
Autores principales: | Zou, Hui-Qin, Li, Shuo, Huang, Ying-Hua, Liu, Yong, Bauer, Rudolf, Peng, Lian, Tao, Ou, Yan, Su-Rong, Yan, Yong-Hong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4157006/ https://www.ncbi.nlm.nih.gov/pubmed/25214873 http://dx.doi.org/10.1155/2014/425341 |
Ejemplares similares
-
Is it possible to rapidly and noninvasively identify different plants from Asteraceae using electronic nose with multiple mathematical algorithms?
por: Zou, Hui-Qin, et al.
Publicado: (2015) -
A Novel Fuzzy Controller for Visible-Light Camera Using RBF-ANN: Enhanced Positioning and Autofocusing
por: Zhou, Junpeng, et al.
Publicado: (2022) -
Modification of an RBF ANN-Based Temperature Compensation Model of Interferometric Fiber Optical Gyroscopes
por: Cheng, Jianhua, et al.
Publicado: (2015) -
A Comparison of RBF Neural Network Training Algorithms for Inertial Sensor Based Terrain Classification
por: Kurban, Tuba, et al.
Publicado: (2009) -
Identification of Chinese Herbal Medicines from Zingiberaceae Family Using Feature Extraction and Cascade Classifier Based on Response Signals from E-Nose
por: Peng, Lian, et al.
Publicado: (2014)