Cargando…
Feature Selection and Classifier Parameters Estimation for EEG Signals Peak Detection Using Particle Swarm Optimization
Electroencephalogram (EEG) signal peak detection is widely used in clinical applications. The peak point can be detected using several approaches, including time, frequency, time-frequency, and nonlinear domains depending on various peak features from several models. However, there is no study that...
Autores principales: | Adam, Asrul, Shapiai, Mohd Ibrahim, Mohd Tumari, Mohd Zaidi, Mohamad, Mohd Saberi, Mubin, Marizan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4157008/ https://www.ncbi.nlm.nih.gov/pubmed/25243236 http://dx.doi.org/10.1155/2014/973063 |
Ejemplares similares
-
Feature selection using angle modulated simulated Kalman filter for peak classification of EEG signals
por: Adam, Asrul, et al.
Publicado: (2016) -
Evaluation of different time domain peak models using extreme learning machine-based peak detection for EEG signal
por: Adam, Asrul, et al.
Publicado: (2016) -
A Synchronous-Asynchronous Particle Swarm Optimisation Algorithm
por: Ab Aziz, Nor Azlina, et al.
Publicado: (2014) -
Improving Vector Evaluated Particle Swarm Optimisation Using Multiple Nondominated Leaders
por: Lim, Kian Sheng, et al.
Publicado: (2014) -
An enhancement of binary particle swarm optimization for gene selection in classifying cancer classes
por: Mohamad, Mohd Saberi, et al.
Publicado: (2013)