Cargando…

Computational Aided-Molecular Imprinted Polymer Design for Solid Phase Extraction of Metaproterenol from Plasma and Determination by Voltammetry Using Modified Carbon Nanotube Electrode

A molecular imprinted polymer (MIP) was computationally designed and synthesized for the selective extraction of metaproterenol (MTP), from human plasma. In this regards semi empirical MP3 and mechanical quantum (DFT) calculations were used to find a suitable functional monomers. On the basis of com...

Descripción completa

Detalles Bibliográficos
Autores principales: Ahmadi, Farhad, Karamian, Ehsan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Shaheed Beheshti University of Medical Sciences 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4157017/
https://www.ncbi.nlm.nih.gov/pubmed/25237337
_version_ 1782333813156741120
author Ahmadi, Farhad
Karamian, Ehsan
author_facet Ahmadi, Farhad
Karamian, Ehsan
author_sort Ahmadi, Farhad
collection PubMed
description A molecular imprinted polymer (MIP) was computationally designed and synthesized for the selective extraction of metaproterenol (MTP), from human plasma. In this regards semi empirical MP3 and mechanical quantum (DFT) calculations were used to find a suitable functional monomers. On the basis of computational and experimental results, acrylic acid (AA) and DMSO:MeOH (90:10 %V/V) were found to be the best choices of functional monomer and polymerization solvents, respectively. This polymer was then used as a selective sorbent to develop a molecularly imprinted solid-phase extraction (MISPE) procedure followed by differential pulse voltammetry by using modified carbon nanotube electrode. The analysis was performed in phosphate buffer, pH 7.0. Peak currents were measured at +0.67 V versus Ag/AgCl. The linear calibration range was 0.026–8.0 μg mL(-1) with a limit of detection 0.01 μg mL(-1). The relative standard deviation at 0.5 μg mL(-1) was 4.76% (n=5). The mean recoveries of 5 μg mL(-1) MTP from plasma was 92.2% (n=5). The data of MISPE-DPV were compared with the MISPE-HPLC-UV. Although, the MISPE-DPV was more sensitive but both techniques have similar accuracy and precision.
format Online
Article
Text
id pubmed-4157017
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Shaheed Beheshti University of Medical Sciences
record_format MEDLINE/PubMed
spelling pubmed-41570172014-09-18 Computational Aided-Molecular Imprinted Polymer Design for Solid Phase Extraction of Metaproterenol from Plasma and Determination by Voltammetry Using Modified Carbon Nanotube Electrode Ahmadi, Farhad Karamian, Ehsan Iran J Pharm Res Original Article A molecular imprinted polymer (MIP) was computationally designed and synthesized for the selective extraction of metaproterenol (MTP), from human plasma. In this regards semi empirical MP3 and mechanical quantum (DFT) calculations were used to find a suitable functional monomers. On the basis of computational and experimental results, acrylic acid (AA) and DMSO:MeOH (90:10 %V/V) were found to be the best choices of functional monomer and polymerization solvents, respectively. This polymer was then used as a selective sorbent to develop a molecularly imprinted solid-phase extraction (MISPE) procedure followed by differential pulse voltammetry by using modified carbon nanotube electrode. The analysis was performed in phosphate buffer, pH 7.0. Peak currents were measured at +0.67 V versus Ag/AgCl. The linear calibration range was 0.026–8.0 μg mL(-1) with a limit of detection 0.01 μg mL(-1). The relative standard deviation at 0.5 μg mL(-1) was 4.76% (n=5). The mean recoveries of 5 μg mL(-1) MTP from plasma was 92.2% (n=5). The data of MISPE-DPV were compared with the MISPE-HPLC-UV. Although, the MISPE-DPV was more sensitive but both techniques have similar accuracy and precision. Shaheed Beheshti University of Medical Sciences 2014 /pmc/articles/PMC4157017/ /pubmed/25237337 Text en © 2014 by School of Pharmacy, Shaheed Beheshti University of Medical Sciences and Health Services This is an Open Access article distributed under the terms of the Creative Commons Attribution License, (http://creativecommons.org/licenses/by/3.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Article
Ahmadi, Farhad
Karamian, Ehsan
Computational Aided-Molecular Imprinted Polymer Design for Solid Phase Extraction of Metaproterenol from Plasma and Determination by Voltammetry Using Modified Carbon Nanotube Electrode
title Computational Aided-Molecular Imprinted Polymer Design for Solid Phase Extraction of Metaproterenol from Plasma and Determination by Voltammetry Using Modified Carbon Nanotube Electrode
title_full Computational Aided-Molecular Imprinted Polymer Design for Solid Phase Extraction of Metaproterenol from Plasma and Determination by Voltammetry Using Modified Carbon Nanotube Electrode
title_fullStr Computational Aided-Molecular Imprinted Polymer Design for Solid Phase Extraction of Metaproterenol from Plasma and Determination by Voltammetry Using Modified Carbon Nanotube Electrode
title_full_unstemmed Computational Aided-Molecular Imprinted Polymer Design for Solid Phase Extraction of Metaproterenol from Plasma and Determination by Voltammetry Using Modified Carbon Nanotube Electrode
title_short Computational Aided-Molecular Imprinted Polymer Design for Solid Phase Extraction of Metaproterenol from Plasma and Determination by Voltammetry Using Modified Carbon Nanotube Electrode
title_sort computational aided-molecular imprinted polymer design for solid phase extraction of metaproterenol from plasma and determination by voltammetry using modified carbon nanotube electrode
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4157017/
https://www.ncbi.nlm.nih.gov/pubmed/25237337
work_keys_str_mv AT ahmadifarhad computationalaidedmolecularimprintedpolymerdesignforsolidphaseextractionofmetaproterenolfromplasmaanddeterminationbyvoltammetryusingmodifiedcarbonnanotubeelectrode
AT karamianehsan computationalaidedmolecularimprintedpolymerdesignforsolidphaseextractionofmetaproterenolfromplasmaanddeterminationbyvoltammetryusingmodifiedcarbonnanotubeelectrode