Cargando…

xMDFF: molecular dynamics flexible fitting of low-resolution X-ray structures

X-ray crystallography remains the most dominant method for solving atomic structures. However, for relatively large systems, the availability of only medium-to-low-resolution diffraction data often limits the determination of all-atom details. A new molecular dynamics flexible fitting (MDFF)-based a...

Descripción completa

Detalles Bibliográficos
Autores principales: McGreevy, Ryan, Singharoy, Abhishek, Li, Qufei, Zhang, Jingfen, Xu, Dong, Perozo, Eduardo, Schulten, Klaus
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Union of Crystallography 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4157446/
https://www.ncbi.nlm.nih.gov/pubmed/25195748
http://dx.doi.org/10.1107/S1399004714013856
Descripción
Sumario:X-ray crystallography remains the most dominant method for solving atomic structures. However, for relatively large systems, the availability of only medium-to-low-resolution diffraction data often limits the determination of all-atom details. A new molecular dynamics flexible fitting (MDFF)-based approach, xMDFF, for determining structures from such low-resolution crystallographic data is reported. xMDFF employs a real-space refinement scheme that flexibly fits atomic models into an iteratively updating electron-density map. It addresses significant large-scale deformations of the initial model to fit the low-resolution density, as tested with synthetic low-resolution maps of d-ribose-binding protein. xMDFF has been successfully applied to re-refine six low-resolution protein structures of varying sizes that had already been submitted to the Protein Data Bank. Finally, via systematic refinement of a series of data from 3.6 to 7 Å resolution, xMDFF refinements together with electro­physiology experiments were used to validate the first all-atom structure of the voltage-sensing protein Ci-VSP.