Cargando…
Mycobacterium tuberculosis Modulates the Gene Interactions to Activate the HIV Replication and Faster Disease Progression in a Co-Infected Host
Understanding of the chronic immune activation, breakdown of immune defense and synergistic effect between HIV and Mycobacterium tuberculosis (Mtb) may provide essential information regarding key factors involved in the pathogenesis of HIV disease. In this study, we aimed to highlight a few of the i...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4157787/ https://www.ncbi.nlm.nih.gov/pubmed/25198707 http://dx.doi.org/10.1371/journal.pone.0106815 |
Sumario: | Understanding of the chronic immune activation, breakdown of immune defense and synergistic effect between HIV and Mycobacterium tuberculosis (Mtb) may provide essential information regarding key factors involved in the pathogenesis of HIV disease. In this study, we aimed to highlight a few of the immunological events that may influence and accelerate the progression of HIV disease in the presence of co-infecting Mtb. A cross-sectional study was performed on cohorts, including anti-tubercular therapy (ATT) naïve active pulmonary tuberculosis (PTB) patients, antiretroviral therapy (ART) naïve HIV-1 infected individuals at different stages of disease, ATT and ART naïve HIV-PTB co-infected individuals and healthy controls. A significantly higher T-regulatory cell (Treg) frequency coupled with the high FoxP3 expression in the CD4 T-cells indicated an immunosuppressive environment in the advance stage of HIV-1 infection. This is further substantiated by high HO-1 expression favoring TB co-infection. Functionally, this change in Treg frequency in HIV-1 infected individuals correlated well with suppression of T-cell proliferation. Mtb infection seems to facilitate the expansion of the Treg pool along with increased expression of FoxP3, specifically the variant-1, as evident from the data in HIV-1 co-infected as well as in patients with only PTB. A significantly lower expression of HO-1 in co-infected individuals compared to patients with only HIV-infection having comparable CD4 count correlated well with increased expression of CCR5 and CxCR4 as well as NF-κB and inflammatory cytokines IL-6 and TNF-α, which collectively may contribute to enhanced viral replication and increased cell death, hence faster disease progression in co-infected individuals. |
---|