Cargando…
Biochemical systems identification by a random drift particle swarm optimization approach
BACKGROUND: Finding an efficient method to solve the parameter estimation problem (inverse problem) for nonlinear biochemical dynamical systems could help promote the functional understanding at the system level for signalling pathways. The problem is stated as a data-driven nonlinear regression pro...
Autores principales: | Sun, Jun, Palade, Vasile, Cai, Yujie, Fang, Wei, Wu, Xiaojun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4158603/ https://www.ncbi.nlm.nih.gov/pubmed/25078435 |
Ejemplares similares
-
Diversity-guided Lamarckian random drift particle swarm optimization for flexible ligand docking
por: Li, Chao, et al.
Publicado: (2020) -
Parallel multi-swarm cooperative particle swarm optimization for protein–ligand docking and virtual screening
por: Li, Chao, et al.
Publicado: (2022) -
Modeling and Compensation of Random Drift of MEMS Gyroscopes Based on Least Squares Support Vector Machine Optimized by Chaotic Particle Swarm Optimization
por: Xing, Haifeng, et al.
Publicado: (2017) -
Quadrotor Identification through the Cooperative Particle Swarm Optimization-Cuckoo Search Approach
por: El gmili, Nada, et al.
Publicado: (2019) -
A Swarm Optimization Genetic Algorithm Based on Quantum-Behaved Particle Swarm Optimization
por: Sun, Tao, et al.
Publicado: (2017)