Cargando…
Data-driven discovery of seasonally linked diseases from an Electronic Health Records system
BACKGROUND: Patterns of disease incidence can identify new risk factors for the disease or provide insight into the etiology. For example, allergies and infectious diseases have been shown to follow periodic temporal patterns due to seasonal changes in environmental or infectious agents. Previous wo...
Autores principales: | Melamed, Rachel D, Khiabanian, Hossein, Rabadan, Raul |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4158606/ https://www.ncbi.nlm.nih.gov/pubmed/25078762 |
Ejemplares similares
-
Signs of the 2009 Influenza Pandemic in the New York-Presbyterian Hospital Electronic Health Records
por: Khiabanian, Hossein, et al.
Publicado: (2010) -
Discovering Disease Associations by Integrating Electronic Clinical Data and Medical Literature
por: Holmes, Antony B., et al.
Publicado: (2011) -
Reassortment Patterns in Swine Influenza Viruses
por: Khiabanian, Hossein, et al.
Publicado: (2009) -
ParMap, an algorithm for the identification of small genomic insertions and deletions in nextgen sequencing data
por: Khiabanian, Hossein, et al.
Publicado: (2010) -
Data‐driven discovery of probable Alzheimer's disease and related dementia subphenotypes using electronic health records
por: Xu, Jie, et al.
Publicado: (2020)