Cargando…

Analysis of biomedical data with multilevel glyphs

BACKGROUND: This paper presents multilevel data glyphs optimized for the interactive knowledge discovery and visualization of large biomedical data sets. Data glyphs are three- dimensional objects defined by multiple levels of geometric descriptions (levels of detail) combined with a mapping of data...

Descripción completa

Detalles Bibliográficos
Autores principales: Müller, Heimo, Reihs, Robert, Zatloukal, Kurt, Holzinger, Andreas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4158616/
https://www.ncbi.nlm.nih.gov/pubmed/25079119
Descripción
Sumario:BACKGROUND: This paper presents multilevel data glyphs optimized for the interactive knowledge discovery and visualization of large biomedical data sets. Data glyphs are three- dimensional objects defined by multiple levels of geometric descriptions (levels of detail) combined with a mapping of data attributes to graphical elements and methods, which specify their spatial position. METHODS: In the data mapping phase, which is done by a biomedical expert, meta information about the data attributes (scale, number of distinct values) are compared with the visual capabilities of the graphical elements in order to give a feedback to the user about the correctness of the variable mapping. The spatial arrangement of glyphs is done in a dimetric view, which leads to high data density, a simplified 3D navigation and avoids perspective distortion. RESULTS: We show the usage of data glyphs in the disease analyser a visual analytics application for personalized medicine and provide an outlook to a biomedical web visualization scenario. CONCLUSIONS: Data glyphs can be successfully applied in the disease analyser for the analysis of big medical data sets. Especially the automatic validation of the data mapping, selection of subgroups within histograms and the visual comparison of the value distributions were seen by experts as an important functionality.