Cargando…
Computational identification of surrogate genes for prostate cancer phases using machine learning and molecular network analysis
BACKGROUND: Prostate cancer is one of the most common malignant diseases and is characterized by heterogeneity in the clinical course. To date, there are no efficient morphologic features or genomic biomarkers that can characterize the phenotypes of the cancer, especially with regard to metastasis –...
Autores principales: | Li, Rudong, Dong, Xiao, Ma, Chengcheng, Liu, Lei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4159107/ https://www.ncbi.nlm.nih.gov/pubmed/25151146 http://dx.doi.org/10.1186/1742-4682-11-37 |
Ejemplares similares
-
A Computational Study Identifies HIV Progression-Related Genes Using mRMR and Shortest Path Tracing
por: Ma, Chengcheng, et al.
Publicado: (2013) -
A machine learning-based comparative analysis of surrogate models for design optimisation in computational fluid dynamics
por: Mukhtar, Azfarizal, et al.
Publicado: (2023) -
Surrogate models based on machine learning methods for parameter estimation of left ventricular myocardium
por: Cai, Li, et al.
Publicado: (2021) -
Using machine learning as a surrogate model for agent-based simulations
por: Angione, Claudio, et al.
Publicado: (2022) -
Bridging the gap between mechanistic biological models and machine learning surrogates
por: Gherman, Ioana M., et al.
Publicado: (2023)