Cargando…

Preparation and therapeutic evaluation of (188)Re-thermogelling emulsion in rat model of hepatocellular carcinoma

Radiolabeled Lipiodol(®) (Guerbet, Villepinte, France) is routinely used in hepatoma therapy. The temperature-sensitive hydrogel polyethylene glycol-b-poly-DL-lactic acid-co-glycolic acid-b-polyethylene glycol triblock copolymer is used as an embolic agent and sustained drug release system. This stu...

Descripción completa

Detalles Bibliográficos
Autores principales: Shih, Ying-Hsia, Lin, Xi-Zhang, Yeh, Chung-Hsin, Peng, Cheng-Liang, Shieh, Ming-Jium, Lin, Wuu-Jyh, Luo, Tsai-Yueh
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove Medical Press 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4159399/
https://www.ncbi.nlm.nih.gov/pubmed/25214783
http://dx.doi.org/10.2147/IJN.S66346
Descripción
Sumario:Radiolabeled Lipiodol(®) (Guerbet, Villepinte, France) is routinely used in hepatoma therapy. The temperature-sensitive hydrogel polyethylene glycol-b-poly-DL-lactic acid-co-glycolic acid-b-polyethylene glycol triblock copolymer is used as an embolic agent and sustained drug release system. This study attempted to combine the polyethylene glycol-b-poly-DL-lactic acid-co-glycolic acid-b-polyethylene glycol hydrogel and radio-labeled Lipiodol to form a new radio-thermogelling emulsion, rhenium-188–N,N’-1,2-ethanediylbis-L-cysteine diethyl-ester dihydrochloride–Lipiodol/hydrogel ((188)Re-ELH). The therapeutic potential of (188)Re-ELH was evaluated in a rodent hepatoma model. Rhenium-188 chelated with N,N’-1,2-ethanediylbis-L-cysteine diethyl-ester dihydrochloride was extracted with Lipiodol to obtain rhenium-188–N,N’-1,2-ethanediylbis-L-cysteine diethyl-ester dihydrochloride–Lipiodol ((188)Re-EL), which was blended with the hydrogel in equal volumes to develop (188)Re-ELH. The (188)Re-ELH phase stability was evaluated at different temperatures. Biodistribution patterns and micro-single-photon emission computed tomography/computed tomography images in Sprague Dawley rats implanted with the rat hepatoma cell line N1-S1 were observed after in situ tumoral injection of ~3.7 MBq (188)Re-ELH. The therapeutic potential of (188)Re-EL (48.58±3.86 MBq/0.1 mL, n=12) was evaluated in a 2-month survival study using the same animal model. The therapeutic effects of (188)Re-ELH (25.52±4.64 MBq/0.1 mL, n=12) were evaluated and compared with those of (188)Re-EL. The responses were assessed by changes in tumor size and survival rates. The (188)Re-ELH emulsion was stable in the gel form at 25°C–35°C for >52 hours. Biodistribution data and micro-single-photon emission computed tomography/computed tomography images of the (188)Re-ELH group indicated that most activity was selectively observed in hepatomas. Long-term (188)Re-ELH studies have demonstrated protracted reductions in tumor volumes and positive effects on the survival rates (75%) of N1-S1 hepatoma-bearing rats. Conversely, the 2-month survival rate was 13% in the control sham group. Therapeutic responses differed significantly between the two groups (P<0.005). Thus, the hydrogel enhanced the injection stability of (188)Re-EL in an animal hepatoma model. Given the synergistic results, direct (188)Re-ELH intratumoral injection is a potential therapeutic alternative for hepatoma treatment.