Cargando…
Supervised learning with decision margins in pools of spiking neurons
Learning to categorise sensory inputs by generalising from a few examples whose category is precisely known is a crucial step for the brain to produce appropriate behavioural responses. At the neuronal level, this may be performed by adaptation of synaptic weights under the influence of a training s...
Autores principales: | Le Mouel, Charlotte, Harris, Kenneth D., Yger, Pierre |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4159595/ https://www.ncbi.nlm.nih.gov/pubmed/24862859 http://dx.doi.org/10.1007/s10827-014-0505-9 |
Ejemplares similares
-
Supervised learning in spiking neurons
por: Le Mouel, Charlotte, et al.
Publicado: (2013) -
The Convallis learning rule for unsupervised learning in spiking neuronal networks
por: Yger, Pierre, et al.
Publicado: (2013) -
Impact of sub and supra-threshold adaptation currents in networks of spiking neurons
por: Colliaux, David, et al.
Publicado: (2015) -
The Convallis Rule for Unsupervised Learning in Cortical Networks
por: Yger, Pierre, et al.
Publicado: (2013) -
Pre-Synaptic Pool Modification (PSPM): A supervised learning procedure for recurrent spiking neural networks
por: Bagley, Bryce Allen, et al.
Publicado: (2020)