Cargando…

Locally optimal extracellular stimulation for chaotic desynchronization of neural populations

We use optimal control theory to design a methodology to find locally optimal stimuli for desynchronization of a model of neurons with extracellular stimulation. This methodology yields stimuli which lead to positive Lyapunov exponents, and hence desynchronizes a neural population. We analyze this m...

Descripción completa

Detalles Bibliográficos
Autores principales: Wilson, Dan, Moehlis, Jeff
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4159599/
https://www.ncbi.nlm.nih.gov/pubmed/24899243
http://dx.doi.org/10.1007/s10827-014-0499-3
_version_ 1782334260024180736
author Wilson, Dan
Moehlis, Jeff
author_facet Wilson, Dan
Moehlis, Jeff
author_sort Wilson, Dan
collection PubMed
description We use optimal control theory to design a methodology to find locally optimal stimuli for desynchronization of a model of neurons with extracellular stimulation. This methodology yields stimuli which lead to positive Lyapunov exponents, and hence desynchronizes a neural population. We analyze this methodology in the presence of interneuron coupling to make predictions about the strength of stimulation required to overcome synchronizing effects of coupling. This methodology suggests a powerful alternative to pulsatile stimuli for deep brain stimulation as it uses less energy than pulsatile stimuli, and could eliminate the time consuming tuning process.
format Online
Article
Text
id pubmed-4159599
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Springer US
record_format MEDLINE/PubMed
spelling pubmed-41595992014-09-11 Locally optimal extracellular stimulation for chaotic desynchronization of neural populations Wilson, Dan Moehlis, Jeff J Comput Neurosci Article We use optimal control theory to design a methodology to find locally optimal stimuli for desynchronization of a model of neurons with extracellular stimulation. This methodology yields stimuli which lead to positive Lyapunov exponents, and hence desynchronizes a neural population. We analyze this methodology in the presence of interneuron coupling to make predictions about the strength of stimulation required to overcome synchronizing effects of coupling. This methodology suggests a powerful alternative to pulsatile stimuli for deep brain stimulation as it uses less energy than pulsatile stimuli, and could eliminate the time consuming tuning process. Springer US 2014-06-05 2014 /pmc/articles/PMC4159599/ /pubmed/24899243 http://dx.doi.org/10.1007/s10827-014-0499-3 Text en © The Author(s) 2014 https://creativecommons.org/licenses/by/4.0/ Open AccessThis article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.
spellingShingle Article
Wilson, Dan
Moehlis, Jeff
Locally optimal extracellular stimulation for chaotic desynchronization of neural populations
title Locally optimal extracellular stimulation for chaotic desynchronization of neural populations
title_full Locally optimal extracellular stimulation for chaotic desynchronization of neural populations
title_fullStr Locally optimal extracellular stimulation for chaotic desynchronization of neural populations
title_full_unstemmed Locally optimal extracellular stimulation for chaotic desynchronization of neural populations
title_short Locally optimal extracellular stimulation for chaotic desynchronization of neural populations
title_sort locally optimal extracellular stimulation for chaotic desynchronization of neural populations
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4159599/
https://www.ncbi.nlm.nih.gov/pubmed/24899243
http://dx.doi.org/10.1007/s10827-014-0499-3
work_keys_str_mv AT wilsondan locallyoptimalextracellularstimulationforchaoticdesynchronizationofneuralpopulations
AT moehlisjeff locallyoptimalextracellularstimulationforchaoticdesynchronizationofneuralpopulations