Cargando…
Silver Nanoparticles/Ibuprofen-Loaded Poly(l-lactide) Fibrous Membrane: Anti-Infection and Anti-Adhesion Effects
Infection caused by bacteria is one of the crucial risk factors for tendon adhesion formation. Silver nanoparticles (AgNP)-loaded physical barriers were reported to be effective in anti-infection and anti-adhesion. However, high silver load may lead to kidney and liver damages. This study was design...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4159836/ https://www.ncbi.nlm.nih.gov/pubmed/25119863 http://dx.doi.org/10.3390/ijms150814014 |
Sumario: | Infection caused by bacteria is one of the crucial risk factors for tendon adhesion formation. Silver nanoparticles (AgNP)-loaded physical barriers were reported to be effective in anti-infection and anti-adhesion. However, high silver load may lead to kidney and liver damages. This study was designed for Ibuprofen (IBU)-loaded poly(l-lactide) (PLLA) electrospun fibrous membranes containing a low dosage of Ag to evaluate its potential in maintaining suitable anti-infection and good anti-adhesion effects. The in vitro drug release study showed a sustained release of Ag ions and IBU from the membrane. Inferior adherence and proliferation of fibroblasts were found on the Ag4%–IBU4%-loaded PLLA electrospun fibrous membranes in comparison with pure PLLA and 4% Ag-loaded PLLA membranes. In the antibacterial test, all Ag-loaded PLLA electrospun fibrous membranes prevented the adhesion of Staphylococcus aureus and Staphylococcus epidermidis. Taken together, these results demonstrate that Ibuprofen is effective in enhancing the anti-adhesion and anti-proliferation effects of 4% Ag-loaded PLLA fibrous membrane. The medical potential of infection reduction and adhesion prevention of Ag4%–IBU4%-loaded PLLA electrospun fibrous membrane deserves to be further studied. |
---|