Cargando…

The tRNA-Dependent Biosynthesis of Modified Cyclic Dipeptides

In recent years it has become apparent that aminoacyl-tRNAs are not only crucial components involved in protein biosynthesis, but are also used as substrates and amino acid donors in a variety of other important cellular processes, ranging from bacterial cell wall biosynthesis and lipid modification...

Descripción completa

Detalles Bibliográficos
Autores principales: Giessen, Tobias W., Marahiel, Mohamed A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4159871/
https://www.ncbi.nlm.nih.gov/pubmed/25196600
http://dx.doi.org/10.3390/ijms150814610
Descripción
Sumario:In recent years it has become apparent that aminoacyl-tRNAs are not only crucial components involved in protein biosynthesis, but are also used as substrates and amino acid donors in a variety of other important cellular processes, ranging from bacterial cell wall biosynthesis and lipid modification to protein turnover and secondary metabolite assembly. In this review, we focus on tRNA-dependent biosynthetic pathways that generate modified cyclic dipeptides (CDPs). The essential peptide bond-forming catalysts responsible for the initial generation of a CDP-scaffold are referred to as cyclodipeptide synthases (CDPSs) and use loaded tRNAs as their substrates. After initially discussing the phylogenetic distribution and organization of CDPS gene clusters, we will focus on structural and catalytic properties of CDPSs before turning to two recently characterized CDPS-dependent pathways that assemble modified CDPs. Finally, possible applications of CDPSs in the rational design of structural diversity using combinatorial biosynthesis will be discussed before concluding with a short outlook.