Cargando…

The spine problem: finding a function for dendritic spines

Why do neurons have dendritic spines? This question—the heart of what Yuste calls “the spine problem”—presupposes that why-questions of this sort have scientific answers: that empirical findings can favor or count against claims about why neurons have spines. Here we show how such questions can rece...

Descripción completa

Detalles Bibliográficos
Autores principales: Malanowski, Sarah, Craver, Carl F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4159972/
https://www.ncbi.nlm.nih.gov/pubmed/25309340
http://dx.doi.org/10.3389/fnana.2014.00095
Descripción
Sumario:Why do neurons have dendritic spines? This question—the heart of what Yuste calls “the spine problem”—presupposes that why-questions of this sort have scientific answers: that empirical findings can favor or count against claims about why neurons have spines. Here we show how such questions can receive empirical answers. We construe such why-questions as questions about how spines make a difference to the behavior of some mechanism that we take to be significant. Why-questions are driven fundamentally by the effort to understand how some item, such as the dendritic spine, is situated in the causal structure of the world (the causal nexus). They ask for a filter on that busy world that allows us to see a part’s individual contribution to a mechanism, independent of everything else going on. So understood, answers to why-questions can be assessed by testing the claims these answers make about the causal structure of a mechanism. We distinguish four ways of making a difference to a mechanism (necessary, modulatory, component, background condition), and we sketch their evidential requirements. One consequence of our analysis is that there are many spine problems and that any given spine problem might have many acceptable answers.