Cargando…

Bridging long gap peripheral nerve injury using skeletal muscle-derived multipotent stem cells

Long gap peripheral nerve injuries usually reulting in life-changing problems for patients. Skeletal muscle derived-multipotent stem cells (Sk-MSCs) can differentiate into Schwann and perineurial/endoneurial cells, vascular relating pericytes, and endothelial and smooth muscle cells in the damaged p...

Descripción completa

Detalles Bibliográficos
Autor principal: Tamaki, Tetsuro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Medknow Publications & Media Pvt Ltd 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4160861/
https://www.ncbi.nlm.nih.gov/pubmed/25221587
http://dx.doi.org/10.4103/1673-5374.137582
Descripción
Sumario:Long gap peripheral nerve injuries usually reulting in life-changing problems for patients. Skeletal muscle derived-multipotent stem cells (Sk-MSCs) can differentiate into Schwann and perineurial/endoneurial cells, vascular relating pericytes, and endothelial and smooth muscle cells in the damaged peripheral nerve niche. Application of the Sk-MSCs in the bridging conduit for repairing long nerve gap injury resulted favorable axonal regeneration, which showing superior effects than gold standard therapy--healthy nerve autograft. This means that it does not need to sacrifice of healthy nerves or loss of related functions for repairing peripheral nerve injury.