Cargando…

Effect of cigarette smoke condensate on gene promoter methylation in human lung cells

BACKGROUND: In lung cancer, an association between tobacco smoking and promoter DNA hypermethylation has been demonstrated for several genes. However, underlying mechanisms for promoter hypermethylation in tobacco-induced cancer are yet to be fully established. METHODS: Promoter methylation was eval...

Descripción completa

Detalles Bibliográficos
Autores principales: Lyn-Cook, Lascelles, Word, Beverly, George, Nysia, Lyn-Cook, Beverly, Hammons, George
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4160916/
https://www.ncbi.nlm.nih.gov/pubmed/25214829
http://dx.doi.org/10.1186/1617-9625-12-15
_version_ 1782334464176685056
author Lyn-Cook, Lascelles
Word, Beverly
George, Nysia
Lyn-Cook, Beverly
Hammons, George
author_facet Lyn-Cook, Lascelles
Word, Beverly
George, Nysia
Lyn-Cook, Beverly
Hammons, George
author_sort Lyn-Cook, Lascelles
collection PubMed
description BACKGROUND: In lung cancer, an association between tobacco smoking and promoter DNA hypermethylation has been demonstrated for several genes. However, underlying mechanisms for promoter hypermethylation in tobacco-induced cancer are yet to be fully established. METHODS: Promoter methylation was evaluated in control and cigarette smoke condensate (CSC) exposed human lung cells using the Methyl-Profiler DNA Methylation PCR System. PSAE cells were exposed to 0.3 or 1.0 μg/ml CSC for 72 hours and longer term for 14 and 30 days. NL-20 cells were exposed for 30 days to 10 or 100 μg/ml CSC. RESULTS: Promoters of several genes, including hsa-let-7a-3, CHD1, CXCL12, PAX5, RASSF2, and TCF21, were highly methylated (>90%); hsa-let-7a-3 was affected in both cell lines and under all exposure conditions. Level of methylation tended to increase with CSC concentration and exposure duration (statistical differences were not determined). Percentage methylation of TCF21, which was >98% at exposures of 10 or 100 μg/ml CSC, was found to be reduced to 28% and 42%, respectively, in the presence of the dietary agent genistein. CONCLUSIONS: Using array techniques, several tumor suppressor genes in human lung cells were identified that undergo promoter hypermethylation, providing further evidence of their potential involvement in tobacco smoke-induced lung carcinogenesis and their use as potential biomarkers of harm in tobacco smoke exposure. Results from the study also demonstrated the potential of a dietary agent to exert chemopreventive activity in human tissue against tobacco smoke related diseases through modulation of DNA methylation. Additional studies are needed to confirm these findings.
format Online
Article
Text
id pubmed-4160916
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-41609162014-09-12 Effect of cigarette smoke condensate on gene promoter methylation in human lung cells Lyn-Cook, Lascelles Word, Beverly George, Nysia Lyn-Cook, Beverly Hammons, George Tob Induc Dis Short Report BACKGROUND: In lung cancer, an association between tobacco smoking and promoter DNA hypermethylation has been demonstrated for several genes. However, underlying mechanisms for promoter hypermethylation in tobacco-induced cancer are yet to be fully established. METHODS: Promoter methylation was evaluated in control and cigarette smoke condensate (CSC) exposed human lung cells using the Methyl-Profiler DNA Methylation PCR System. PSAE cells were exposed to 0.3 or 1.0 μg/ml CSC for 72 hours and longer term for 14 and 30 days. NL-20 cells were exposed for 30 days to 10 or 100 μg/ml CSC. RESULTS: Promoters of several genes, including hsa-let-7a-3, CHD1, CXCL12, PAX5, RASSF2, and TCF21, were highly methylated (>90%); hsa-let-7a-3 was affected in both cell lines and under all exposure conditions. Level of methylation tended to increase with CSC concentration and exposure duration (statistical differences were not determined). Percentage methylation of TCF21, which was >98% at exposures of 10 or 100 μg/ml CSC, was found to be reduced to 28% and 42%, respectively, in the presence of the dietary agent genistein. CONCLUSIONS: Using array techniques, several tumor suppressor genes in human lung cells were identified that undergo promoter hypermethylation, providing further evidence of their potential involvement in tobacco smoke-induced lung carcinogenesis and their use as potential biomarkers of harm in tobacco smoke exposure. Results from the study also demonstrated the potential of a dietary agent to exert chemopreventive activity in human tissue against tobacco smoke related diseases through modulation of DNA methylation. Additional studies are needed to confirm these findings. BioMed Central 2014-09-05 /pmc/articles/PMC4160916/ /pubmed/25214829 http://dx.doi.org/10.1186/1617-9625-12-15 Text en Copyright © 2014 Lyn-Cook et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/4.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Short Report
Lyn-Cook, Lascelles
Word, Beverly
George, Nysia
Lyn-Cook, Beverly
Hammons, George
Effect of cigarette smoke condensate on gene promoter methylation in human lung cells
title Effect of cigarette smoke condensate on gene promoter methylation in human lung cells
title_full Effect of cigarette smoke condensate on gene promoter methylation in human lung cells
title_fullStr Effect of cigarette smoke condensate on gene promoter methylation in human lung cells
title_full_unstemmed Effect of cigarette smoke condensate on gene promoter methylation in human lung cells
title_short Effect of cigarette smoke condensate on gene promoter methylation in human lung cells
title_sort effect of cigarette smoke condensate on gene promoter methylation in human lung cells
topic Short Report
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4160916/
https://www.ncbi.nlm.nih.gov/pubmed/25214829
http://dx.doi.org/10.1186/1617-9625-12-15
work_keys_str_mv AT lyncooklascelles effectofcigarettesmokecondensateongenepromotermethylationinhumanlungcells
AT wordbeverly effectofcigarettesmokecondensateongenepromotermethylationinhumanlungcells
AT georgenysia effectofcigarettesmokecondensateongenepromotermethylationinhumanlungcells
AT lyncookbeverly effectofcigarettesmokecondensateongenepromotermethylationinhumanlungcells
AT hammonsgeorge effectofcigarettesmokecondensateongenepromotermethylationinhumanlungcells