Cargando…
Limits to high-speed simulations of spiking neural networks using general-purpose computers
To understand how the central nervous system performs computations using recurrent neuronal circuitry, simulations have become an indispensable tool for theoretical neuroscience. To study neuronal circuits and their ability to self-organize, increasing attention has been directed toward synaptic pla...
Autores principales: | Zenke, Friedemann, Gerstner, Wulfram |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4160969/ https://www.ncbi.nlm.nih.gov/pubmed/25309418 http://dx.doi.org/10.3389/fninf.2014.00076 |
Ejemplares similares
-
Inference of neuronal network spike dynamics and topology from calcium imaging data
por: Lütcke, Henry, et al.
Publicado: (2013) -
Diverse synaptic plasticity mechanisms orchestrated to form and retrieve memories in spiking neural networks
por: Zenke, Friedemann, et al.
Publicado: (2015) -
Synaptic Plasticity in Neural Networks Needs Homeostasis with a Fast Rate Detector
por: Zenke, Friedemann, et al.
Publicado: (2013) -
Predicting non-linear dynamics by stable local learning in a recurrent spiking neural network
por: Gilra, Aditya, et al.
Publicado: (2017) -
Plasticity and stability in recurrent neural networks
por: Zenke, Friedemann, et al.
Publicado: (2011)