Cargando…
Crossword expertise as recognitional decision making: an artificial intelligence approach
The skills required to solve crossword puzzles involve two important aspects of lexical memory: semantic information in the form of clues that indicate the meaning of the answer, and orthographic patterns that constrain the possibilities but may also provide hints to possible answers. Mueller and Th...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4161049/ https://www.ncbi.nlm.nih.gov/pubmed/25309483 http://dx.doi.org/10.3389/fpsyg.2014.01018 |
_version_ | 1782334492431613952 |
---|---|
author | Thanasuan, Kejkaew Mueller, Shane T. |
author_facet | Thanasuan, Kejkaew Mueller, Shane T. |
author_sort | Thanasuan, Kejkaew |
collection | PubMed |
description | The skills required to solve crossword puzzles involve two important aspects of lexical memory: semantic information in the form of clues that indicate the meaning of the answer, and orthographic patterns that constrain the possibilities but may also provide hints to possible answers. Mueller and Thanasuan (2013) proposed a model accounting for the simple memory access processes involved in solving individual crossword clues, but expert solvers also bring additional skills and strategies to bear on solving complete puzzles. In this paper, we developed an computational model of crossword solving that incorporates strategic and other factors, and is capable of solving crossword puzzles in a human-like fashion, in order to understand the complete set of skills needed to solve a crossword puzzle. We compare our models to human expert and novice solvers to investigate how different strategic and structural factors in crossword play impact overall performance. Results reveal that expert crossword solving relies heavily on fluent semantic memory search and retrieval, which appear to allow experts to take better advantage of orthographic-route solutions, and experts employ strategies that enable them to use orthographic information. Furthermore, other processes central to traditional AI models (error correction and backtracking) appear to be of less importance for human players. |
format | Online Article Text |
id | pubmed-4161049 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-41610492014-10-10 Crossword expertise as recognitional decision making: an artificial intelligence approach Thanasuan, Kejkaew Mueller, Shane T. Front Psychol Psychology The skills required to solve crossword puzzles involve two important aspects of lexical memory: semantic information in the form of clues that indicate the meaning of the answer, and orthographic patterns that constrain the possibilities but may also provide hints to possible answers. Mueller and Thanasuan (2013) proposed a model accounting for the simple memory access processes involved in solving individual crossword clues, but expert solvers also bring additional skills and strategies to bear on solving complete puzzles. In this paper, we developed an computational model of crossword solving that incorporates strategic and other factors, and is capable of solving crossword puzzles in a human-like fashion, in order to understand the complete set of skills needed to solve a crossword puzzle. We compare our models to human expert and novice solvers to investigate how different strategic and structural factors in crossword play impact overall performance. Results reveal that expert crossword solving relies heavily on fluent semantic memory search and retrieval, which appear to allow experts to take better advantage of orthographic-route solutions, and experts employ strategies that enable them to use orthographic information. Furthermore, other processes central to traditional AI models (error correction and backtracking) appear to be of less importance for human players. Frontiers Media S.A. 2014-09-11 /pmc/articles/PMC4161049/ /pubmed/25309483 http://dx.doi.org/10.3389/fpsyg.2014.01018 Text en Copyright © 2014 Thanasuan and Mueller. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Psychology Thanasuan, Kejkaew Mueller, Shane T. Crossword expertise as recognitional decision making: an artificial intelligence approach |
title | Crossword expertise as recognitional decision making: an artificial intelligence approach |
title_full | Crossword expertise as recognitional decision making: an artificial intelligence approach |
title_fullStr | Crossword expertise as recognitional decision making: an artificial intelligence approach |
title_full_unstemmed | Crossword expertise as recognitional decision making: an artificial intelligence approach |
title_short | Crossword expertise as recognitional decision making: an artificial intelligence approach |
title_sort | crossword expertise as recognitional decision making: an artificial intelligence approach |
topic | Psychology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4161049/ https://www.ncbi.nlm.nih.gov/pubmed/25309483 http://dx.doi.org/10.3389/fpsyg.2014.01018 |
work_keys_str_mv | AT thanasuankejkaew crosswordexpertiseasrecognitionaldecisionmakinganartificialintelligenceapproach AT muellershanet crosswordexpertiseasrecognitionaldecisionmakinganartificialintelligenceapproach |