Cargando…

Sodium Dodecyl Sulfate Monomers Induce XAO Peptide Polyproline II to α-Helix Transition

[Image: see text] XAO peptide (Ac–X(2)A(7)O(2)–NH(2); X: diaminobutyric acid side chain, −CH(2)CH(2)NH(3)(+); O: ornithine side chain, −CH(2)CH(2)CH(2)NH(3)(+)) in aqueous solution shows a predominantly polyproline II (PPII) conformation without any detectable α-helix-like conformations. Here we dem...

Descripción completa

Detalles Bibliográficos
Autores principales: Hong, Zhenmin, Damodaran, Krishnan, Asher, Sanford A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2014
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4161145/
https://www.ncbi.nlm.nih.gov/pubmed/25121643
http://dx.doi.org/10.1021/jp504133m
_version_ 1782334494729043968
author Hong, Zhenmin
Damodaran, Krishnan
Asher, Sanford A.
author_facet Hong, Zhenmin
Damodaran, Krishnan
Asher, Sanford A.
author_sort Hong, Zhenmin
collection PubMed
description [Image: see text] XAO peptide (Ac–X(2)A(7)O(2)–NH(2); X: diaminobutyric acid side chain, −CH(2)CH(2)NH(3)(+); O: ornithine side chain, −CH(2)CH(2)CH(2)NH(3)(+)) in aqueous solution shows a predominantly polyproline II (PPII) conformation without any detectable α-helix-like conformations. Here we demonstrate by using circular dichroism (CD), ultraviolet resonance Raman (UVRR) and nuclear magnetic resonance (NMR) spectroscopy that sodium dodecyl sulfate (SDS) monomers bind to XAO and induce formation of α-helix-like conformations. The stoichiometry and the association constants of SDS and XAO were determined from the XAO–SDS diffusion coefficients measured by pulsed field gradient NMR. We developed a model for the formation of XAO–SDS aggregate α-helix-like conformations. Using UVRR spectroscopy, we calculated the Ramachandran ψ angle distributions of aggregated XAO peptides. We resolved α-, π- and 3(10)- helical conformations and a turn conformation. XAO nucleates SDS aggregation at SDS concentrations below the SDS critical micelle concentration. The XAO(4)–SDS(16) aggregates have four SDS molecules bound to each XAO to neutralize the four side chain cationic charges. We propose that the SDS alkyl chains partition into a hydrophobic core to minimize the hydrophobic area exposed to water. Neutralization of the flanking XAO charges enables α-helix formation. Four XAO–SDS(4) aggregates form a complex with an SDS alkyl chain-dominated hydrophobic core and a more hydrophilic shell where one face of the α-helix peptide contacts the water environment.
format Online
Article
Text
id pubmed-4161145
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-41611452015-08-14 Sodium Dodecyl Sulfate Monomers Induce XAO Peptide Polyproline II to α-Helix Transition Hong, Zhenmin Damodaran, Krishnan Asher, Sanford A. J Phys Chem B [Image: see text] XAO peptide (Ac–X(2)A(7)O(2)–NH(2); X: diaminobutyric acid side chain, −CH(2)CH(2)NH(3)(+); O: ornithine side chain, −CH(2)CH(2)CH(2)NH(3)(+)) in aqueous solution shows a predominantly polyproline II (PPII) conformation without any detectable α-helix-like conformations. Here we demonstrate by using circular dichroism (CD), ultraviolet resonance Raman (UVRR) and nuclear magnetic resonance (NMR) spectroscopy that sodium dodecyl sulfate (SDS) monomers bind to XAO and induce formation of α-helix-like conformations. The stoichiometry and the association constants of SDS and XAO were determined from the XAO–SDS diffusion coefficients measured by pulsed field gradient NMR. We developed a model for the formation of XAO–SDS aggregate α-helix-like conformations. Using UVRR spectroscopy, we calculated the Ramachandran ψ angle distributions of aggregated XAO peptides. We resolved α-, π- and 3(10)- helical conformations and a turn conformation. XAO nucleates SDS aggregation at SDS concentrations below the SDS critical micelle concentration. The XAO(4)–SDS(16) aggregates have four SDS molecules bound to each XAO to neutralize the four side chain cationic charges. We propose that the SDS alkyl chains partition into a hydrophobic core to minimize the hydrophobic area exposed to water. Neutralization of the flanking XAO charges enables α-helix formation. Four XAO–SDS(4) aggregates form a complex with an SDS alkyl chain-dominated hydrophobic core and a more hydrophilic shell where one face of the α-helix peptide contacts the water environment. American Chemical Society 2014-08-14 2014-09-11 /pmc/articles/PMC4161145/ /pubmed/25121643 http://dx.doi.org/10.1021/jp504133m Text en Copyright © 2014 American Chemical Society Terms of Use (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html)
spellingShingle Hong, Zhenmin
Damodaran, Krishnan
Asher, Sanford A.
Sodium Dodecyl Sulfate Monomers Induce XAO Peptide Polyproline II to α-Helix Transition
title Sodium Dodecyl Sulfate Monomers Induce XAO Peptide Polyproline II to α-Helix Transition
title_full Sodium Dodecyl Sulfate Monomers Induce XAO Peptide Polyproline II to α-Helix Transition
title_fullStr Sodium Dodecyl Sulfate Monomers Induce XAO Peptide Polyproline II to α-Helix Transition
title_full_unstemmed Sodium Dodecyl Sulfate Monomers Induce XAO Peptide Polyproline II to α-Helix Transition
title_short Sodium Dodecyl Sulfate Monomers Induce XAO Peptide Polyproline II to α-Helix Transition
title_sort sodium dodecyl sulfate monomers induce xao peptide polyproline ii to α-helix transition
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4161145/
https://www.ncbi.nlm.nih.gov/pubmed/25121643
http://dx.doi.org/10.1021/jp504133m
work_keys_str_mv AT hongzhenmin sodiumdodecylsulfatemonomersinducexaopeptidepolyprolineiitoahelixtransition
AT damodarankrishnan sodiumdodecylsulfatemonomersinducexaopeptidepolyprolineiitoahelixtransition
AT ashersanforda sodiumdodecylsulfatemonomersinducexaopeptidepolyprolineiitoahelixtransition