Cargando…
An In Vitro Cord Formation Assay Identifies Unique Vascular Phenotypes Associated with Angiogenic Growth Factors
Vascular endothelial growth factor (VEGF) plays a dominant role in angiogenesis. While inhibitors of the VEGF pathway are approved for the treatment of a number of tumor types, the effectiveness is limited and evasive resistance is common. One mechanism of evasive resistance to inhibition of the VEG...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4161374/ https://www.ncbi.nlm.nih.gov/pubmed/25210890 http://dx.doi.org/10.1371/journal.pone.0106901 |
_version_ | 1782334542603878400 |
---|---|
author | Falcon, Beverly L. Swearingen, Michelle Gough, Wendy H. Lee, Linda Foreman, Robert Uhlik, Mark Hanson, Jeff C. Lee, Jonathan A. McClure, Don B. Chintharlapalli, Sudhakar |
author_facet | Falcon, Beverly L. Swearingen, Michelle Gough, Wendy H. Lee, Linda Foreman, Robert Uhlik, Mark Hanson, Jeff C. Lee, Jonathan A. McClure, Don B. Chintharlapalli, Sudhakar |
author_sort | Falcon, Beverly L. |
collection | PubMed |
description | Vascular endothelial growth factor (VEGF) plays a dominant role in angiogenesis. While inhibitors of the VEGF pathway are approved for the treatment of a number of tumor types, the effectiveness is limited and evasive resistance is common. One mechanism of evasive resistance to inhibition of the VEGF pathway is upregulation of other pro-angiogenic factors such as fibroblast growth factor (FGF) and epidermal growth factor (EGF). Numerous in vitro assays examine angiogenesis, but many of these assays are performed in media or matrix with multiple growth factors or are driven by VEGF. In order to study angiogenesis driven by other growth factors, we developed a basal medium to use on a co-culture cord formation system of adipose derived stem cells (ADSCs) and endothelial colony forming cells (ECFCs). We found that cord formation driven by different angiogenic factors led to unique phenotypes that could be differentiated and combination studies indicate dominant phenotypes elicited by some growth factors. VEGF-driven cords were highly covered by smooth muscle actin, and bFGF-driven cords had thicker nodes, while EGF-driven cords were highly branched. Multiparametric analysis indicated that when combined EGF has a dominant phenotype. In addition, because this assay system is run in minimal medium, potential proangiogenic molecules can be screened. Using this assay we identified an inhibitor that promoted cord formation, which was translated into in vivo tumor models. Together this study illustrates the unique roles of multiple anti-angiogenic agents, which may lead to improvements in therapeutic angiogenesis efforts and better rational for anti-angiogenic therapy. |
format | Online Article Text |
id | pubmed-4161374 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-41613742014-09-17 An In Vitro Cord Formation Assay Identifies Unique Vascular Phenotypes Associated with Angiogenic Growth Factors Falcon, Beverly L. Swearingen, Michelle Gough, Wendy H. Lee, Linda Foreman, Robert Uhlik, Mark Hanson, Jeff C. Lee, Jonathan A. McClure, Don B. Chintharlapalli, Sudhakar PLoS One Research Article Vascular endothelial growth factor (VEGF) plays a dominant role in angiogenesis. While inhibitors of the VEGF pathway are approved for the treatment of a number of tumor types, the effectiveness is limited and evasive resistance is common. One mechanism of evasive resistance to inhibition of the VEGF pathway is upregulation of other pro-angiogenic factors such as fibroblast growth factor (FGF) and epidermal growth factor (EGF). Numerous in vitro assays examine angiogenesis, but many of these assays are performed in media or matrix with multiple growth factors or are driven by VEGF. In order to study angiogenesis driven by other growth factors, we developed a basal medium to use on a co-culture cord formation system of adipose derived stem cells (ADSCs) and endothelial colony forming cells (ECFCs). We found that cord formation driven by different angiogenic factors led to unique phenotypes that could be differentiated and combination studies indicate dominant phenotypes elicited by some growth factors. VEGF-driven cords were highly covered by smooth muscle actin, and bFGF-driven cords had thicker nodes, while EGF-driven cords were highly branched. Multiparametric analysis indicated that when combined EGF has a dominant phenotype. In addition, because this assay system is run in minimal medium, potential proangiogenic molecules can be screened. Using this assay we identified an inhibitor that promoted cord formation, which was translated into in vivo tumor models. Together this study illustrates the unique roles of multiple anti-angiogenic agents, which may lead to improvements in therapeutic angiogenesis efforts and better rational for anti-angiogenic therapy. Public Library of Science 2014-09-11 /pmc/articles/PMC4161374/ /pubmed/25210890 http://dx.doi.org/10.1371/journal.pone.0106901 Text en © 2014 Falcon et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Falcon, Beverly L. Swearingen, Michelle Gough, Wendy H. Lee, Linda Foreman, Robert Uhlik, Mark Hanson, Jeff C. Lee, Jonathan A. McClure, Don B. Chintharlapalli, Sudhakar An In Vitro Cord Formation Assay Identifies Unique Vascular Phenotypes Associated with Angiogenic Growth Factors |
title | An In Vitro Cord Formation Assay Identifies Unique Vascular Phenotypes Associated with Angiogenic Growth Factors |
title_full | An In Vitro Cord Formation Assay Identifies Unique Vascular Phenotypes Associated with Angiogenic Growth Factors |
title_fullStr | An In Vitro Cord Formation Assay Identifies Unique Vascular Phenotypes Associated with Angiogenic Growth Factors |
title_full_unstemmed | An In Vitro Cord Formation Assay Identifies Unique Vascular Phenotypes Associated with Angiogenic Growth Factors |
title_short | An In Vitro Cord Formation Assay Identifies Unique Vascular Phenotypes Associated with Angiogenic Growth Factors |
title_sort | in vitro cord formation assay identifies unique vascular phenotypes associated with angiogenic growth factors |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4161374/ https://www.ncbi.nlm.nih.gov/pubmed/25210890 http://dx.doi.org/10.1371/journal.pone.0106901 |
work_keys_str_mv | AT falconbeverlyl aninvitrocordformationassayidentifiesuniquevascularphenotypesassociatedwithangiogenicgrowthfactors AT swearingenmichelle aninvitrocordformationassayidentifiesuniquevascularphenotypesassociatedwithangiogenicgrowthfactors AT goughwendyh aninvitrocordformationassayidentifiesuniquevascularphenotypesassociatedwithangiogenicgrowthfactors AT leelinda aninvitrocordformationassayidentifiesuniquevascularphenotypesassociatedwithangiogenicgrowthfactors AT foremanrobert aninvitrocordformationassayidentifiesuniquevascularphenotypesassociatedwithangiogenicgrowthfactors AT uhlikmark aninvitrocordformationassayidentifiesuniquevascularphenotypesassociatedwithangiogenicgrowthfactors AT hansonjeffc aninvitrocordformationassayidentifiesuniquevascularphenotypesassociatedwithangiogenicgrowthfactors AT leejonathana aninvitrocordformationassayidentifiesuniquevascularphenotypesassociatedwithangiogenicgrowthfactors AT mccluredonb aninvitrocordformationassayidentifiesuniquevascularphenotypesassociatedwithangiogenicgrowthfactors AT chintharlapallisudhakar aninvitrocordformationassayidentifiesuniquevascularphenotypesassociatedwithangiogenicgrowthfactors AT falconbeverlyl invitrocordformationassayidentifiesuniquevascularphenotypesassociatedwithangiogenicgrowthfactors AT swearingenmichelle invitrocordformationassayidentifiesuniquevascularphenotypesassociatedwithangiogenicgrowthfactors AT goughwendyh invitrocordformationassayidentifiesuniquevascularphenotypesassociatedwithangiogenicgrowthfactors AT leelinda invitrocordformationassayidentifiesuniquevascularphenotypesassociatedwithangiogenicgrowthfactors AT foremanrobert invitrocordformationassayidentifiesuniquevascularphenotypesassociatedwithangiogenicgrowthfactors AT uhlikmark invitrocordformationassayidentifiesuniquevascularphenotypesassociatedwithangiogenicgrowthfactors AT hansonjeffc invitrocordformationassayidentifiesuniquevascularphenotypesassociatedwithangiogenicgrowthfactors AT leejonathana invitrocordformationassayidentifiesuniquevascularphenotypesassociatedwithangiogenicgrowthfactors AT mccluredonb invitrocordformationassayidentifiesuniquevascularphenotypesassociatedwithangiogenicgrowthfactors AT chintharlapallisudhakar invitrocordformationassayidentifiesuniquevascularphenotypesassociatedwithangiogenicgrowthfactors |