Cargando…

Alternating sums of reciprocal generalized Fibonacci numbers

ABSTRACT: Recently Holliday and Komatsu extended the results of Ohtsuka and Nakamura on reciprocal sums of Fibonacci numbers to reciprocal sums of generalized Fibonacci numbers. The aim of this work is to give similar results for the alternating sums of reciprocals of the generalized Fibonacci numbe...

Descripción completa

Detalles Bibliográficos
Autor principal: Kuhapatanakul, Kantaphon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4161721/
https://www.ncbi.nlm.nih.gov/pubmed/25221739
http://dx.doi.org/10.1186/2193-1801-3-485
_version_ 1782334586874757120
author Kuhapatanakul, Kantaphon
author_facet Kuhapatanakul, Kantaphon
author_sort Kuhapatanakul, Kantaphon
collection PubMed
description ABSTRACT: Recently Holliday and Komatsu extended the results of Ohtsuka and Nakamura on reciprocal sums of Fibonacci numbers to reciprocal sums of generalized Fibonacci numbers. The aim of this work is to give similar results for the alternating sums of reciprocals of the generalized Fibonacci numbers with indices in arithmetic progression. Finally we note our generalizations of some results of Holliday and Komatsu. AMS SUBJECT CLASSIFICATION: Primary 11B37; secondary 11B39
format Online
Article
Text
id pubmed-4161721
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Springer International Publishing
record_format MEDLINE/PubMed
spelling pubmed-41617212014-09-12 Alternating sums of reciprocal generalized Fibonacci numbers Kuhapatanakul, Kantaphon Springerplus Research ABSTRACT: Recently Holliday and Komatsu extended the results of Ohtsuka and Nakamura on reciprocal sums of Fibonacci numbers to reciprocal sums of generalized Fibonacci numbers. The aim of this work is to give similar results for the alternating sums of reciprocals of the generalized Fibonacci numbers with indices in arithmetic progression. Finally we note our generalizations of some results of Holliday and Komatsu. AMS SUBJECT CLASSIFICATION: Primary 11B37; secondary 11B39 Springer International Publishing 2014-08-29 /pmc/articles/PMC4161721/ /pubmed/25221739 http://dx.doi.org/10.1186/2193-1801-3-485 Text en © Kuhapatanakul; licensee Springer. 2014 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.
spellingShingle Research
Kuhapatanakul, Kantaphon
Alternating sums of reciprocal generalized Fibonacci numbers
title Alternating sums of reciprocal generalized Fibonacci numbers
title_full Alternating sums of reciprocal generalized Fibonacci numbers
title_fullStr Alternating sums of reciprocal generalized Fibonacci numbers
title_full_unstemmed Alternating sums of reciprocal generalized Fibonacci numbers
title_short Alternating sums of reciprocal generalized Fibonacci numbers
title_sort alternating sums of reciprocal generalized fibonacci numbers
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4161721/
https://www.ncbi.nlm.nih.gov/pubmed/25221739
http://dx.doi.org/10.1186/2193-1801-3-485
work_keys_str_mv AT kuhapatanakulkantaphon alternatingsumsofreciprocalgeneralizedfibonaccinumbers