Cargando…
Towards identification of true cancer biomarkers
BACKGROUND: Most of newly discovered cancer biomarkers fail in the clinic because they lack sensitivity and/or specificity. The current explosion in knowledge of the mutational spectrum of many cancer types, as a result of whole exome and whole genome sequencing, has revealed a wide spectrum of muta...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4161831/ https://www.ncbi.nlm.nih.gov/pubmed/25220599 http://dx.doi.org/10.1186/s12916-014-0156-8 |
Sumario: | BACKGROUND: Most of newly discovered cancer biomarkers fail in the clinic because they lack sensitivity and/or specificity. The current explosion in knowledge of the mutational spectrum of many cancer types, as a result of whole exome and whole genome sequencing, has revealed a wide spectrum of mutations that appear to be highly specific for various cancer types. DISCUSSION: Mass spectrometry (MS) has the ability to monitor tryptic peptides in complex biological mixtures with high sensitivity and specificity. It may be possible in the near future to combine the known spectrum of gene mutations revealed by genomics with the power of MS, in order to quantify mutant peptides that are highly specific for cancer, in a multiplex fashion. Such mutant peptides, quantified in the circulation and other fluids, may represent tumor markers that are suitable for detection and monitoring of cancer. SUMMARY: The power of genomic and proteomic technologies can be combined to identify highly specific analytes for biomarker applications. |
---|