Cargando…

Gamabufotalin, a bufadienolide compound from toad venom, suppresses COX-2 expression through targeting IKKβ/NF-κB signaling pathway in lung cancer cells

BACKGROUND: Gamabufotalin (CS-6), a major bufadienolide of Chansu, has been used for cancer therapy due to its desirable metabolic stability and less adverse effect. However, the underlying mechanism of CS-6 involved in anti-tumor activity remains poorly understood. METHODS: The biological functions...

Descripción completa

Detalles Bibliográficos
Autores principales: Yu, Zhenlong, Guo, Wei, Ma, Xiaochi, Zhang, Baojing, Dong, Peipei, Huang, Lin, Wang, Xiuli, Wang, Chao, Huo, Xiaokui, Yu, Wendan, Yi, Canhui, Xiao, Yao, Yang, Wenjing, Qin, Yu, Yuan, Yuhui, Meng, Songshu, Liu, Quentin, Deng, Wuguo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4161895/
https://www.ncbi.nlm.nih.gov/pubmed/25175164
http://dx.doi.org/10.1186/1476-4598-13-203
Descripción
Sumario:BACKGROUND: Gamabufotalin (CS-6), a major bufadienolide of Chansu, has been used for cancer therapy due to its desirable metabolic stability and less adverse effect. However, the underlying mechanism of CS-6 involved in anti-tumor activity remains poorly understood. METHODS: The biological functions of gamabufotalin (CS-6) were investigated by migration, colony formation and apoptosis assays in NSCLC cells. The nuclear localization and interaction between transcriptional co-activator p300 and NF-κB p50/p65 and their binding to COX-2 promoter were analyzed after treatment with CS-6. Molecular docking study was used to simulate the interaction of CS-6 with IKKβ. The in vivo anti-tumor efficacy of CS-6 was also analyzed in xenografts nude mice. Western blot was used to detect the protein expression level. RESULTS: Gamabufotalin (CS-6) strongly suppressed COX-2 expression by inhibiting the phosphorylation of IKKβ via targeting the ATP-binding site, thereby abrogating NF-κB binding and p300 recruitment to COX-2 promoter. In addition, CS-6 induced apoptosis by activating the cytochrome c and caspase-dependent apoptotic pathway. Moreover, CS-6 markedly down-regulated the protein levels of COX-2 and phosphorylated p65 NF-κB in tumor tissues of the xenograft mice, and inhibited tumor weight and size. CONCLUSIONS: Our study provides pharmacological evidence that CS-6 exhibits potential use in the treatment of COX-2-mediated diseases such as lung cancer.