Cargando…

A Neurostimulant para-Chloroamphetamine Inhibits the Arginylation Branch of the N-end Rule Pathway

In the arginylation branch of the N-end rule pathway, unacetylated N-terminal destabilizing residues function as essential determinants of protein degradation signals (N-degron). Here, we show that a neurostimulant, para-chloroamphetamine (PCA), specifically inhibits the Arg/N-end rule pathway, dela...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiang, Yanxialei, Choi, Won Hoon, Lee, Jung Hoon, Han, Dong Hoon, Kim, Ji Hyeon, Chung, Young-Shin, Kim, Se Hyun, Lee, Min Jae
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4161967/
https://www.ncbi.nlm.nih.gov/pubmed/25212999
http://dx.doi.org/10.1038/srep06344
Descripción
Sumario:In the arginylation branch of the N-end rule pathway, unacetylated N-terminal destabilizing residues function as essential determinants of protein degradation signals (N-degron). Here, we show that a neurostimulant, para-chloroamphetamine (PCA), specifically inhibits the Arg/N-end rule pathway, delaying the degradation of its artificial and physiological substrates, including regulators of G protein signaling 4 (RGS4), in vitro and in cultured cells. In silico computational analysis indicated that PCA strongly interacts with both UBR box and ClpS box, which bind to type 1 and type 2 N-degrons, respectively. Moreover, intraperitoneal injection of PCA significantly stabilized endogenous RGS4 proteins in the whole mouse brain and, particularly, in the frontal cortex and hippocampus. Consistent with the role of RGS4 in G protein signaling, treatment with PCA impaired the activations of GPCR downstream effectors in N2A cells, phenocopying ATE1-null mutants. In addition, levels of pathological C-terminal fragments of TDP43 bearing N-degrons (Arg208-TDP25) were significantly elevated in the presence of PCA. Thus, our study identifies PCA as a potential tool to understand and modulate various pathological processes regulated by the Arg/N-end rule pathway, including neurodegenerative processes in FTLD-U and ALS.