Cargando…
Regression Discontinuity Designs in Epidemiology: Causal Inference Without Randomized Trials
When patients receive an intervention based on whether they score below or above some threshold value on a continuously measured random variable, the intervention will be randomly assigned for patients close to the threshold. The regression discontinuity design exploits this fact to estimate causal...
Autores principales: | Bor, Jacob, Moscoe, Ellen, Mutevedzi, Portia, Newell, Marie-Louise, Bärnighausen, Till |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4162343/ https://www.ncbi.nlm.nih.gov/pubmed/25061922 http://dx.doi.org/10.1097/EDE.0000000000000138 |
Ejemplares similares
-
Regression Discontinuity for Causal Effect Estimation in Epidemiology
por: Oldenburg, Catherine E., et al.
Publicado: (2016) -
Universal Difference-in-Differences for Causal Inference in Epidemiology
por: Tchetgen Tchetgen, Eric J., et al.
Publicado: (2023) -
Regression Discontinuity Designs in Health: A Systematic Review
por: Hilton Boon, Michele, et al.
Publicado: (2020) -
The causal effect of retirement on stress in older adults in China: A regression discontinuity study
por: Chen, Simiao, et al.
Publicado: (2019) -
The Trend-in-trend Research Design for Causal Inference
por: Ji, Xinyao, et al.
Publicado: (2017)