Cargando…
Emergence of Antibiotic-Producing Microorganisms in Residential Versus Recreational Microenvironments
AIMS: To identify novel antibiotic-producing microbial strains with unprecedented pertinence. We hypothesize that site-specific soil samples will contain a variety of antibiotic-producing species (APS) with diverse specificity of molecular elements. PLACE AND DURATION OF STUDY: Laboratory of Microbi...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4162663/ https://www.ncbi.nlm.nih.gov/pubmed/25221747 http://dx.doi.org/10.9734/BMRJ/2013/3205 |
_version_ | 1782334704903520256 |
---|---|
author | Woappi, Yvon Gabani, Prashant Singh, Om V. |
author_facet | Woappi, Yvon Gabani, Prashant Singh, Om V. |
author_sort | Woappi, Yvon |
collection | PubMed |
description | AIMS: To identify novel antibiotic-producing microbial strains with unprecedented pertinence. We hypothesize that site-specific soil samples will contain a variety of antibiotic-producing species (APS) with diverse specificity of molecular elements. PLACE AND DURATION OF STUDY: Laboratory of Microbiology, Division of Biological and Health Sciences, University of Pittsburgh, Bradford, PA-16701, USA, between August 2010 and May 2011. METHODOLOGY: The environmental soil samples were collected from residential and recreational sites in Southern, PA, USA at longitude: −76 42 21.7116, latitude: 39 56 35.7252; approximately 201 meters above sea level. Over 70 natural antibiotic-producing soil bacteria were screened against 19 pathogenic microorganisms. Agar-plug assay was established to identify the antibiotics’ potency and pathogenic inhibitory index calculations were employed to measure the inhibitory potential of each isolate; 16S rRNA sequencing was used for microbial classification. RESULTS: A total of 71 microorganisms from residential soil demonstrated zones of inhibition (ZOI), followed by 9 organisms from recreational soil sample. A total of 15 bioactive strains demonstrated convincing growth inhibitory properties against 16 clinically relevant pathogens; 40% revealed pDNA presence, of which 67% exhibited stringent potencies against S. aureus. We observed a highly bioactive residential soil microbiota compared to recreational soil. CONCLUSION: 16S rRNA sequence analysis corroborated several of the species belonging to Enterobacteriaceae, Xanthomonadaceae, and Bacillaceae. These findings may indicate a co-evolutionary biosynthesis of novel antibiotics driven by the increase of bioactive microbiota in residential environments. |
format | Online Article Text |
id | pubmed-4162663 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
record_format | MEDLINE/PubMed |
spelling | pubmed-41626632014-09-12 Emergence of Antibiotic-Producing Microorganisms in Residential Versus Recreational Microenvironments Woappi, Yvon Gabani, Prashant Singh, Om V. Br Microbiol Res J Article AIMS: To identify novel antibiotic-producing microbial strains with unprecedented pertinence. We hypothesize that site-specific soil samples will contain a variety of antibiotic-producing species (APS) with diverse specificity of molecular elements. PLACE AND DURATION OF STUDY: Laboratory of Microbiology, Division of Biological and Health Sciences, University of Pittsburgh, Bradford, PA-16701, USA, between August 2010 and May 2011. METHODOLOGY: The environmental soil samples were collected from residential and recreational sites in Southern, PA, USA at longitude: −76 42 21.7116, latitude: 39 56 35.7252; approximately 201 meters above sea level. Over 70 natural antibiotic-producing soil bacteria were screened against 19 pathogenic microorganisms. Agar-plug assay was established to identify the antibiotics’ potency and pathogenic inhibitory index calculations were employed to measure the inhibitory potential of each isolate; 16S rRNA sequencing was used for microbial classification. RESULTS: A total of 71 microorganisms from residential soil demonstrated zones of inhibition (ZOI), followed by 9 organisms from recreational soil sample. A total of 15 bioactive strains demonstrated convincing growth inhibitory properties against 16 clinically relevant pathogens; 40% revealed pDNA presence, of which 67% exhibited stringent potencies against S. aureus. We observed a highly bioactive residential soil microbiota compared to recreational soil. CONCLUSION: 16S rRNA sequence analysis corroborated several of the species belonging to Enterobacteriaceae, Xanthomonadaceae, and Bacillaceae. These findings may indicate a co-evolutionary biosynthesis of novel antibiotics driven by the increase of bioactive microbiota in residential environments. 2013-04-23 /pmc/articles/PMC4162663/ /pubmed/25221747 http://dx.doi.org/10.9734/BMRJ/2013/3205 Text en © 2013 Woappi et al.; http://creativecommons.org/licenses/by/3.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Article Woappi, Yvon Gabani, Prashant Singh, Om V. Emergence of Antibiotic-Producing Microorganisms in Residential Versus Recreational Microenvironments |
title | Emergence of Antibiotic-Producing Microorganisms in Residential Versus Recreational Microenvironments |
title_full | Emergence of Antibiotic-Producing Microorganisms in Residential Versus Recreational Microenvironments |
title_fullStr | Emergence of Antibiotic-Producing Microorganisms in Residential Versus Recreational Microenvironments |
title_full_unstemmed | Emergence of Antibiotic-Producing Microorganisms in Residential Versus Recreational Microenvironments |
title_short | Emergence of Antibiotic-Producing Microorganisms in Residential Versus Recreational Microenvironments |
title_sort | emergence of antibiotic-producing microorganisms in residential versus recreational microenvironments |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4162663/ https://www.ncbi.nlm.nih.gov/pubmed/25221747 http://dx.doi.org/10.9734/BMRJ/2013/3205 |
work_keys_str_mv | AT woappiyvon emergenceofantibioticproducingmicroorganismsinresidentialversusrecreationalmicroenvironments AT gabaniprashant emergenceofantibioticproducingmicroorganismsinresidentialversusrecreationalmicroenvironments AT singhomv emergenceofantibioticproducingmicroorganismsinresidentialversusrecreationalmicroenvironments |