Cargando…
Smoothing Strategies Combined with ARIMA and Neural Networks to Improve the Forecasting of Traffic Accidents
Two smoothing strategies combined with autoregressive integrated moving average (ARIMA) and autoregressive neural networks (ANNs) models to improve the forecasting of time series are presented. The strategy of forecasting is implemented using two stages. In the first stage the time series is smoothe...
Autores principales: | Barba, Lida, Rodríguez, Nibaldo, Montt, Cecilia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4163352/ https://www.ncbi.nlm.nih.gov/pubmed/25243200 http://dx.doi.org/10.1155/2014/152375 |
Ejemplares similares
-
A Novel Multilevel-SVD Method to Improve Multistep Ahead Forecasting in Traffic Accidents Domain
por: Barba, Lida, et al.
Publicado: (2017) -
Research on GDP Forecast Analysis Combining BP Neural Network and ARIMA Model
por: Lu, Shaobo
Publicado: (2021) -
LLM Multimodal Traffic Accident Forecasting
por: de Zarzà, I., et al.
Publicado: (2023) -
Forecasting daily Covid-19 cases in the world with a hybrid ARIMA and neural network model
por: de Araújo Morais, Lucas Rabelo, et al.
Publicado: (2022) -
A Hybrid Neural Network Model for Sales Forecasting Based on ARIMA and Search Popularity of Article Titles
por: Omar, Hani, et al.
Publicado: (2016)