Cargando…
Abnormal Functional Resting-State Networks in ADHD: Graph Theory and Pattern Recognition Analysis of fMRI Data
The framework of graph theory provides useful tools for investigating the neural substrates of neuropsychiatric disorders. Graph description measures may be useful as predictor variables in classification procedures. Here, we consider several centrality measures as predictor features in a classifica...
Autores principales: | dos Santos Siqueira, Anderson, Biazoli Junior, Claudinei Eduardo, Comfort, William Edgar, Rohde, Luis Augusto, Sato, João Ricardo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4163359/ https://www.ncbi.nlm.nih.gov/pubmed/25309910 http://dx.doi.org/10.1155/2014/380531 |
Ejemplares similares
-
Commentary: A test-retest dataset for assessing long-term reliability of brain morphology and resting-state brain activity
por: Sato, João R., et al.
Publicado: (2017) -
Multimodal resting-state connectivity predicts affective neurofeedback performance
por: Trambaiolli, Lucas R., et al.
Publicado: (2022) -
Evaluation of Pattern Recognition and Feature Extraction Methods in ADHD Prediction
por: Sato, João Ricardo, et al.
Publicado: (2012) -
Functional Connectivity and Complexity Analyses of Resting-State fMRI in Pre-Adolescents with ADHD
por: Zhang, Ru, et al.
Publicado: (2023) -
A method for independent component graph analysis of resting‐state fMRI
por: Ribeiro de Paula, Demetrius, et al.
Publicado: (2017)